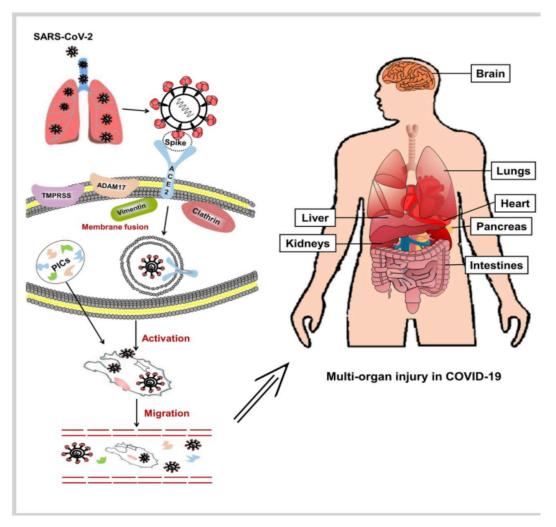
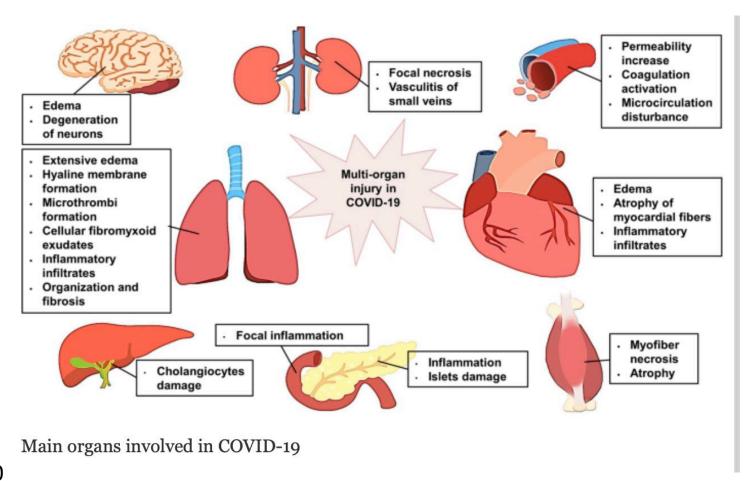
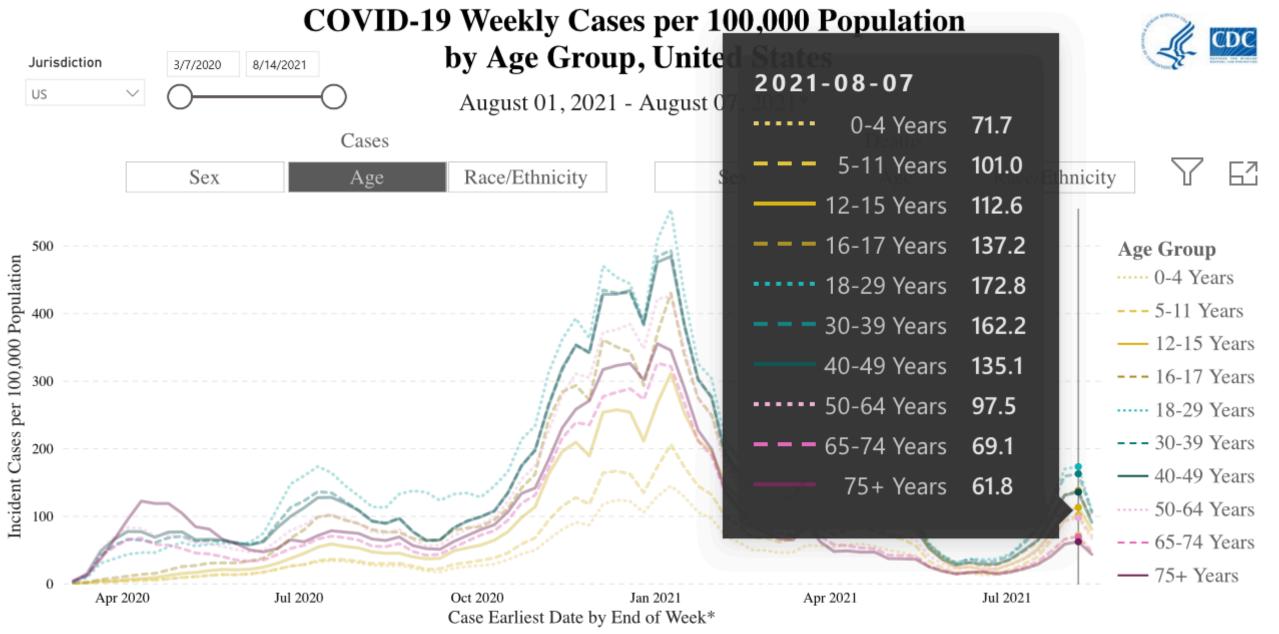

Pediatric Lungs and COVID-19

- Cori Daines, MD
- Pediatric Pulmonary and Sleep Medicine
- University of Arizona
- August 17, 2021


Objectives

SARS-CoV-2 S spike protein binds to the ACE2 receptor, which leads to proteolytic cleavage by TMPRSS2, cathepsin L, and furin in the epithelial cell of the respiratory tract.

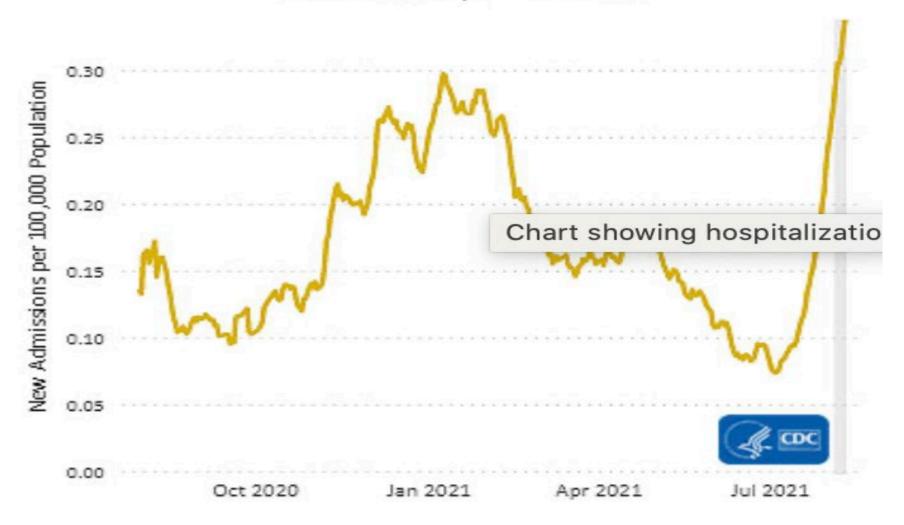

Pathogenesis


- ACE2 receptors are found in large quantities on the surfaces of these organs.
- ACE2 receptors are upregulated in diabetes, obesity, male sex, advancing age, smokers. Theses same risk factors associate with impaired immune response.

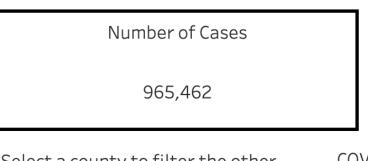
Ni W, et al Crit Care 2020

Pathogenesis

Ni W, et al Crit Care 2020

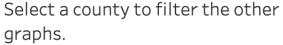


US: The most recent line level case record was reported during the week ending on Aug 14, 2021. Percentage of cases reporting age by date - 98.89%

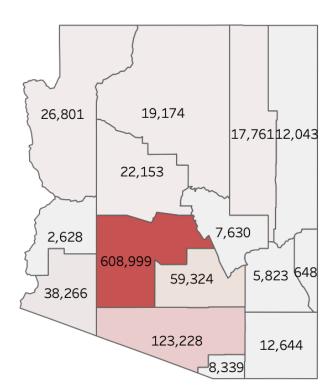

US territories are included in case and death counts but not in population counts. Potential two-week delay in case reporting to CDC denoted by gray bars.

^{*}Case Earliest Date is the earliest of the clinical date (related to illness or specimen collection and chosen by a defined hierarchy) and the Date Received by CDC.

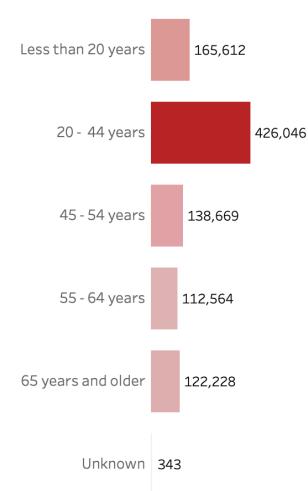
United States | 0 - 17 Years

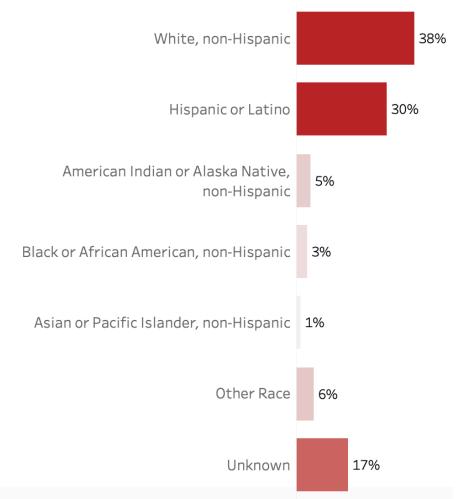


Demographics



Hover over the icon to get more information on the data in this dashboard.




Graphs will not be displayed for counties with fewer than 10 cases.

COVID-19 Cases by Age Group

COVID-19 Cases by Race/Ethnicity

AZ Dept of Health Website

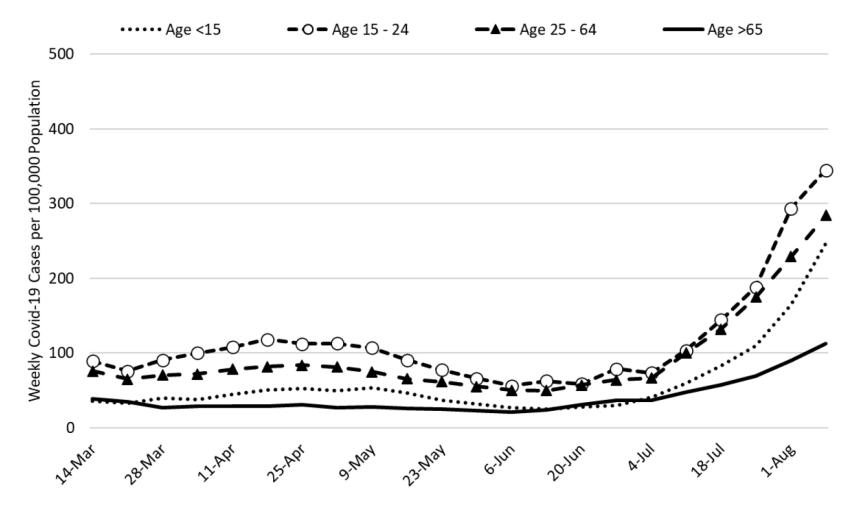


Figure 2a. Newly Diagnosed Covid-19 Cases in Arizona by Age Group March 7 – August 8, 2021.

While difficult to appreciate, Figure 2a shows a <u>new</u> reversal of relative position between children (dotted) and older adults (solid). Historically, children 15 – 19 years of age have had rates approximating those of adults while prepubertal children have had meaningfully lower rates; however, rates among those age 5 – 9 years resemble those of their older counterparts in the presence of the Delta variant and the absence of effective non-pharmacologic measures (see <u>CDC</u> and the <u>American Academy of Pediatrics</u> recommendations; Figure 2b).

COVID-19 Cases per 100K Residents per Week among Children

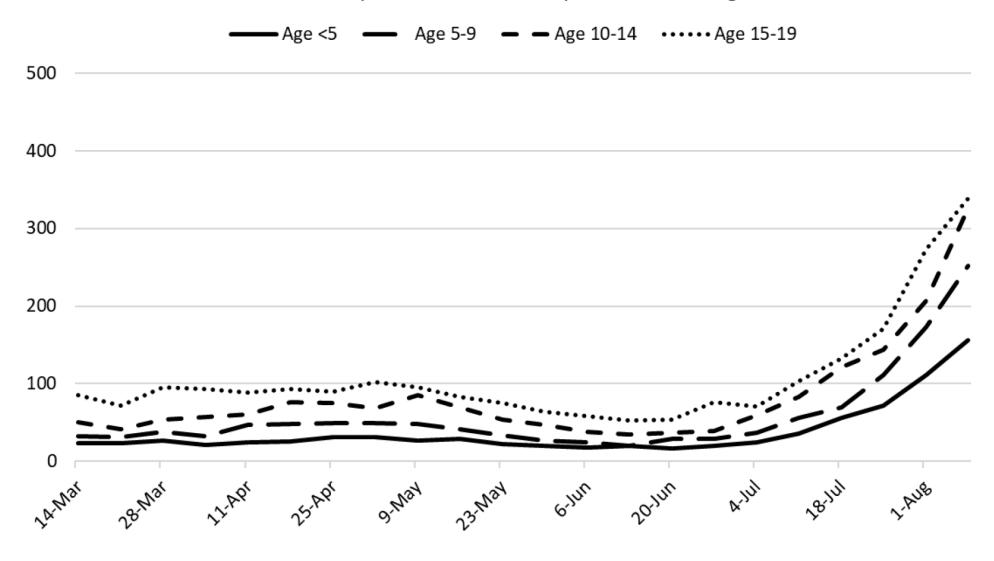


Figure 2b. Newly Diagnosed Covid-19 Cases in Arizona by Age Group March 7 – August 8, 2021.

Created by: Joe K. Gerald, MD, PhD (Associate Professor, Zuckerman College of Public Health, <u>geraldj@email.arizona.edu</u>) with assistance from Patrick Wightman, PhD from the UA Center for Population Health Sciences.

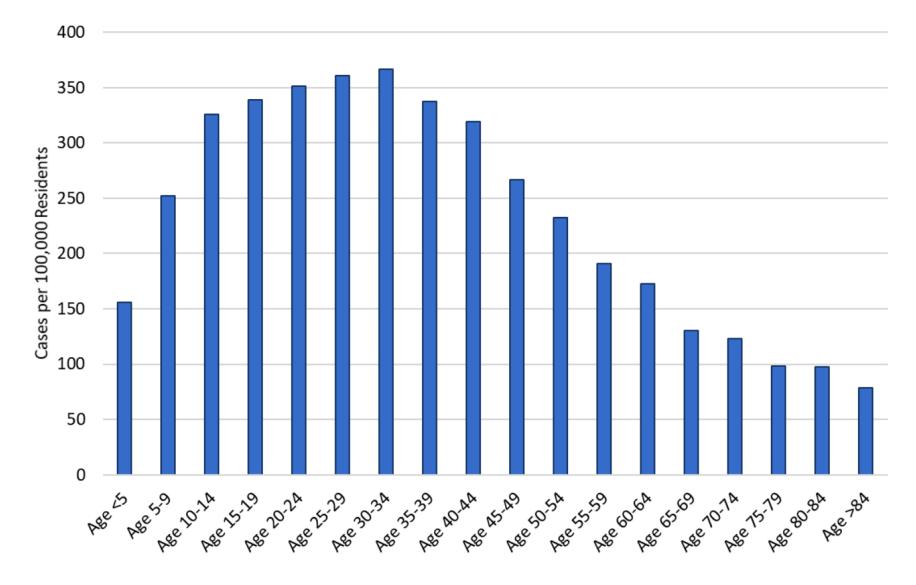
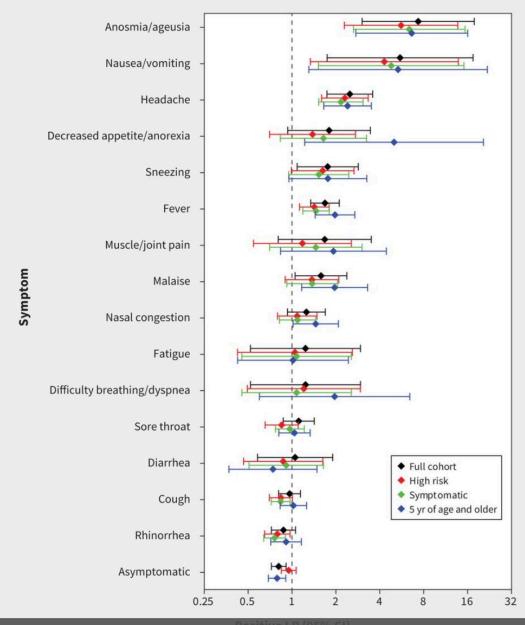


Figure 2c. Weekly COVID-19 Incidence by Age Group August 1 - 8, 2021.

Vaccination has only modestly shifted the age distribution of cases with children "switching" relative position with older adults (Figure 2d). Children now represent about 18% of cases, up from 10% during the winter 2020 outbreak, while older adults now represent about 8% of cases, down from 15% during the winter 2020 outbreak.

Symptoms in Children


- Begin 2-14 days after exposure
- Fever and chills
- Cough
- Shortness of breath or difficulty breathing
- Headache
- Sore throat
- New loss of taste or smell
- Congestion or runny nose
- Diarrhea

Symptoms with Positive Swab

Variable	No. (%) in patients with positive SARS-CoV-2 swab* n = 1987	No. (%) in patients with negative SARS-CoV-2 swab* n = 476	Unadjusted OR (95% CI)	Unadjusted positive LR for SARS-CoV-2 infection (95% CI)
Demographic charac	teristic			
Age, yr; mean ± SD	9.3 ± 5.2	8.5 ± 5.3	NA	NA
Age 0–4 yr	458 (23.0)	143 (30.0)	0.70 (0.56– 0.87)	0.77 (0.65–0.90)
Age 5–12 yr	849 (42.7)	199 (41.8)	1.04 (0.85– 1.27)	1.02 (0.91–1.15)
Age 13–17 yr	680 (34.2)	134 (28.2)	1.33 (1.07– 1.65)	1.22 (1.04–1.42)
Male sex	989 (49.8)	254 (53.4)	0.87 (0.71– 1.06)	0.93 (0.85–1.03)

						+swab	-swab		
Symptom	+swab	-swab			Nasal congestion	241 (12.1)	46 (9.7)	1.29 (0.93– 1.80)	1.26 (0.93–1.69)
Anosmia/ageusia	153 (7.7)	5 (1.1)	7.86 (3.21– 19.26)	7.33 (3.03–17.76)	Fatigue	31 (1.6)	6 (1.3)	1.24 (0.51– 2.99)	1.24 (0.52–2.95)
Nausea/vomiting	69 (3.5)	Suppressed as count < 5	5.67 (1.78– 18.10)	5.51 (1.74–17.43)	Difficulty breathing/dyspnea	31 (1.6)	6 (1.3)	1.24 (0.51– 2.99)	1.24 (0.52–2.95)
Headache	312 (15.7)	30 (6.3)	2.77 (1.88– 4.09)	2.49 (1.74–3.57)	Sore throat	311 (15.7)	67 (14.1)	1.13 (0.85– 1.51)	1.11 (0.87–1.42)
Decreased appetite/anorexia	75 (3.8)	10 (2.1)	1.83 (0.94– 3.56)	1.80 (0.94–3.45)	Diarrhea	57 (2.9)	13 (2.7)	1.05 (0.57– 1.94)	1.05 (0.58–1.90)
Sneezing	132 (6.6)	18 (3.8)	1.81 (1.09– 2.99)	1.76 (1.08–2.85)	Cough	486 (24.5)	121 (25.4)	0.95 (0.75–	0.96 (0.81–1.14)
Fever or feverish chills	506 (25.5)	72 (15.1)	1.92 (1.46– 2.51)	1.68 (1.34–2.11)	Rhinorrhea	383 (19.3)	105 (22.1)	0.84 (0.66–	0.87 (0.72–1.06)
Muscle/joint pain (myalgia, arthralgia, muscular or joint	56 (2.8)	8 (1.7)	1.70 (0.80– 3.58)	1.68 (0.80–3.49)	Chest pain	15 (0.8)	Suppressed as count < 5	NA	NA
pain)					Conjunctivitis	11 (0.6)	Suppressed as count < 5	NA	NA
Malaise	165 (8.3)	25 (5.3)	1.63 (1.06– 2.52)	1.58 (1.05–2.38)	Asymptomatic	714 (35.9)	211 (44.3)	0.70 (0.58–	0.81 (0.72–0.91)
King IΔ et a	I CMAT 2021	1			1			0.86)	

King JA et al CMAJ 2021

Positive likelihood ratios (LRs) for symptoms associated with positive results for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) swabs in children in Alberta. Estimates of positive LRs and associated 95% confidence intervals (CIs) are shown for the full cohort (black), those children identified as having a high risk of exposure through contact tracing (red), those with at least 1 symptom (green) and those aged 5 years or older (blue).

TABLE 4. - Signs and Symptoms of Children With COVID-19, Greece, February 26 to June 30, 2020

Signs/symptoms	N (%)
Signs/ symptoms	N = 92
Fever	42 (45.6)
Low-grade fever	26 (28.3)
Runny nose	25 (27.5)
Cough	24 (26.1)
Headache	17 (18.5)
Sore throat	11 (12)
Diarrhea	10 (10.9)
Loss of taste and/or smell	9 (9.8)
Weakness	9 (9.8)
Myalgia	8 (8.8)
Dyspnea	7 (7.6)
Nausea/vomiting	5 (5.4)
Arthralgia	4 (4.3)
Abdominal pain	2 (2.2)
Restlessness/irritation	1 (1.1)

Maltezou HC et al Pediatr Infect Dis 2020

Multisystem Inflammatory Syndrome in Children (MIS-C) Criteria

<21 years

Fever >/= 38.0 degrees C for >/= 24 hours

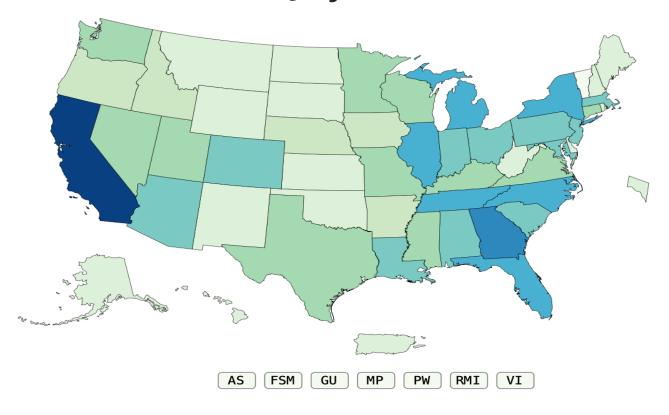
Evidence of inflammation: elevated CRP, ESR, fibrinogen, procalcitonin, D-dimer, ferritin, LDH or IL-6 or low lymphocytes or albumin

Multisystem involvement (cardiac, renal, respiratory, hematologic, gastrointestinal, dermatologic, neurologic)

No alternative diagnosis

Positive SARS-CoV-2 infection or exposure to confirmed COVID-19 case within the 4 weeks prior to symptom onset

MIS-C Phenotypes


Three groupings:

Type 1—multisystem involvement with cardiovascular and gastrointestinal involvement and higher prevalence of abdominal pain, shock, myocarditis, lymphopenia and inflammatory markers

Type 2—respiratory system involvement with cough, shortness of breath, pneumonia and ARDS and case fatality rate over 5%

Type 3— younger, more like Kawasaki with rash, mucosal lesions, lowest prevalence of complications and lower inflammatory markers

Reported MIS-C Case Ranges by Jurisdiction, on or before July 30, 2021*

Total cases: 4404

Total deaths: 37

Reported MIS-C Cases

 No case reported
 1-24 cases

 25-49 cases
 50-99 cases

 100-149 cases
 150-199 cases

 200-249 cases
 250-299 cases

 300+ cases
 300+ cases

Confounders the ACE2 Receptor

ACE2 is a receptor protein on epithelial cells

Breaks down large protein angiotensin II which causes inflammation and bronchoconstriction

In smokers and likely vapers, ACE2 is upregulated—more receptors

ACE2 is also the target of the SARS-CoV-2 virus, so more ACE2 means more sites for virus to bind

Rates of ICU hospitalization and ventilator need in COVID-19 are 2 times higher in smokers

Effects of electonic cigarette use on the respiratory system

increased mucosal permeability, impaired muco-ciliary clearance, peri-bronchial inflammation and fibrosis

upregulation of ACE2 receptors on the lung epithelium

compromised neutrophil trafficking, NET formation, humoral and cell-mediated immune responses

upregulation of pro-inflammatory biomarkers, such as IL-6, TNF-a

cytokine storm leading to multi-organ inflammation, damage and ultimately failure

Effects of SARS-CoV-2 (COVID-19) on the respiratory system

pathogen entry into host via respiratory droplets or aerosols

binding of the S2 domain on the coronavirus to the ACE2 receptor on lung epithelium

compromised neutrophil trafficking, NET formation, humoral and cell-mediated immune responses

upregulation of pro-inflammatory biomarkers, such Click on image to zoon

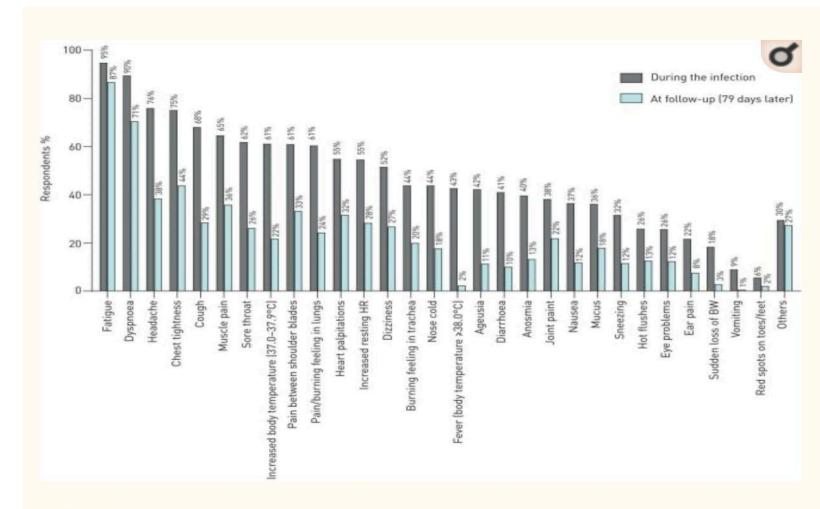
cytokine storm resulting in pneumonia, as well as multi-organ inflammation, damage and ultimately failure (MIS-C)

Brar E et al Front Pediatr 2021

	Ever-use of inhaled tobac	Ever-use of inhaled tobacco and			Past 30-day use of inhaled tobacco and		
	COVID-19—related symptoms (n = 4,043)			COVID-19—related symptoms (n = 4,043)	COVID-19 test $(n = 4,048)$	COVID-19—positive diagnosis ($n = 4,048$)	
	Odds ratio (95% CI)	Odds ratio (95% CI)	Odds ratio (95% CI)	Odds ratio (95% CI)	Odds ratio (95% CI)	Odds ratio (95% CI)	
Inhaled tobacco products							
Cigarettes only	1.40 (.83, 2.38)	3.94 (1.43, 10.86)	2.32 (.34, 15.86)	1.15 (.58, 2.27)	1.16 (.64, 2.12)	1.53 (.29, 8.14)	
E-cigarettes only	1.18 (.80, 1.73)	3.25 (1.77, 5.94)	5.05 (1.82, 13.96)	1.43 (.84, 2.43)	2.55 (1.33, 4.87)	1.91 (.77, 4.73)	
Dual use	1.36 (.90, 2.04)	3.58 (1.96, 6.54)	6.97 (1.98, 24.55)	4.69 (3.07, 7.16)	9.16 (5.43, 15.47)	6.84 (2.40, 19.55)	
Never used	Ref	Ref	Ref	Ref	Ref	Ref	

Children and youth 13-24 yrs

More common symptoms if smoked and vaped – cough, fever, fatigue, difficulty breathing


And more likely to get a COVID-19 test

But even more likely to have a POSITIVE COVID-19 test

HELP YOUR ADOLESCENTS STOP VAPING

Long-term Symptoms in Adults

 Symptom report in the Netherlands during infection and 79 days later—2001 people not hospitalized, 112 hospitalized

FIGURE 2

Prevalence of symptoms during the infection and at follow-up (79 days later). BW: body weight; HR: heart rate.

Long COVID (Adults and Children)

Characteristic	All	0-15 years	16-30 years	31-45 years	46-60 years	Over 60 years
	% (n/N)	% (n)	% (n)	% (n)	% (n)	% (n)
	N = 247	<i>N</i> = 16	<i>N</i> = 61	N = 58	N = 67	<i>N</i> = 45
Age, median (IQR)	43 (27–55)	8 (6–12)	24(22–27)	37 (34–41)	53 (49–55)	67 (63–73)
Female gender	53% (131/247)	56% (9)	54% (33)	52% (30)	52% (35)	53% (24)
Status at 6 months						
Any symptoms	55% (136/247)	13% (2)*	52% (32)	59% (34)	61% (41)	60% (27)
Fever	2% (4/247)	0% (0)	0% (0)	5% (3)	1% (1)	0% (0)
Cough	6% (15/247)	0% (0)	0% (0)	9% (5)	4% (3)	16% (7)
Dyspnea	15% (38/247)	0% (0)	13% (8)	17% (10)	18% (12)	18% (8)
Palpitations	6% (15/247)	0% (0)	3% (2)	7% (4)	9% (6)	7% (3)
Stomach upset	6% (15/247)	6% (1)	5% (3)	7% (4)	6% (4)	7% (3)
Disturbed taste/smell	27% (67/247)	13% (2)	28% (17)	34% (20)	28% (19)	20% (9)
Fatigue	30% (69/231)	_ a	21% (13)	31% (18)	33% (22)	36% (16)
Concentration problems	19% (44/231)	_ a	13% (8)	19% (11)	21% (14)	24% (11)
Memory problems	18% (42/231)	_ a	11% (7)	16% (9)	22% (15)	24% (11)
Sleep problems	5% (13/247)	0% (0)	5% (3)	7% (4)	4% (3)	7% (3)
Headache	11% (28/247)	0% (0)	11% (7)	14% (8)	9% (6)	16% (7)
Dizziness	10% (24/247)	0% (0)	7% (4)	10% (6)	10% (7)	16% (7)
Tingling in fingers	4% (9/247)	0% (0)	0% (0)	2% (1)	4% (3)	11% (5)

Bloomberg B et al Nat Med 2021

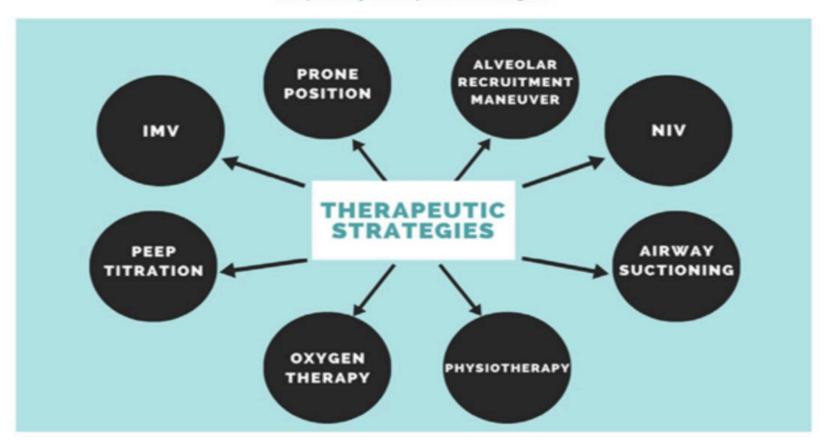
Italian Study of
Persistent Symptoms
In Children

		All
	Persisting symptoms	N 129
	Fatigue (compared to befo	re COVID-19 diagno
	Less	1 (0.8%)
	A bit less	16 (12.4%)
S	Same	98 (75.9%)
	A bit more	13 (10.1%)
	More	1 (0.8%)
	Insomnia	24 (18.6%)
	Nasal congestion/ rhinorrhoea	16 (12.4%)
	Persistent muscle pain	13 (10.1%)
	Headache	13 (10.1%)
	Lack of concentration	13 (10.1%)
	Weight loss	10 (7.7%)
	Joint pain or swelling	9 (6.9%)
	Skin rashes	9 (6.9%)
	Chest tightness	8 (6.2%)
	Constipation	8 (6.2%)
	Persistent cough	7 (5.4%)
	Altered smell	6 (4.6%)
	Palpitations	5 (3.8%)
	Chest pain	4 (3.1%)
	Altered taste	4 (3.1%)
	Hypersomnia	4 (3.1%)
	Stomach/abdominal pain	3 (2.3%)
	Diarrhoea	2 (1.5%)
	Menstruation	2 (1.5%)
	other: yes	3 (2.3%)
	Any persisting symptoms	
	None	54 (41.9%)
	1–2	46 (35.6%)

Buonsenso D et al Acta Paediatr 2021

Possible Treatments for Hospitalized Children

Table 2 Therapeutic considerations for acute covid-19 by clinical syndrome/disease severity


Clinical scenario	Pharmacologic interventions
Hospitalized for mild to moderate covid-19 (not hypoxemic)	 Supportive care No clear benefit for remdesivir or convalescent plasma Steroids have no demonstrated benefit and may cause harm
Hospitalized for severe covid-19, but not critical (hypoxemic needing low flow supplemental oxygen)	 Supportive care Corticosteroids (dexamethasone 6 mg/day × 10 days or until discharge or an equivalent dose of hydrocortisone or methylprednisolone) May consider remdesivir May benefit from use of tocilizumab.
Hospitalized for covid-19 and critically ill (needing HFNC, NIV, IMV, or ECMO)	 Supportive care Corticosteroids (dexamethasone 6 mg/day × 10 days or until discharge or an equivalent dose of hydrocortisone or methylprednisolone) May consider remdesivir May benefit from use of tocilizumab.

Attaway AH, at al BMJ 2021

Pulmonary Acute Therapy Potential

COVID-19 IN CHILD POPULATION

Respiratory Therapeutic Strategies

NIH Treatment Guidelines in Children

- No RCT's to reference
- COVID 19 is generally milder in children and requires no specific therapies
- Children with special health care needs and risk factors may be at more risk for severe disease
- Most mild COVID are managed w/ supportive care alone

Remdesivir in Children

- Hospitalized children >/= 12 y.o. w/ severe risk factors for severe disease or increasing O2 need
- Hospitalized children >/= 16 y.o. w/ increasing O2 need
- Consult ID for use in younger hospitalized children

Dexamethasone in Children

Hospitalized children with HFNC O2/NIV/INV Ventilation/ECMO

Convalescent Plasma

Against use in hospitalized children not requiring ventilation

Persistent Symptoms Post-COVID in Children

UK data—500,000 infections in children

12.9% of children 2-11 y.o. still have symptoms 5 weeks after infection

14.5% of children 12-16 y.o. still have symptoms 5 weeks after infection

Symptoms include fatigue, muscle and joint pain, headache, insomnia, respiratory problems, heart problems, gastrointestinal problems, nausea, dizziness, seizures, hallucinations, testicular pain

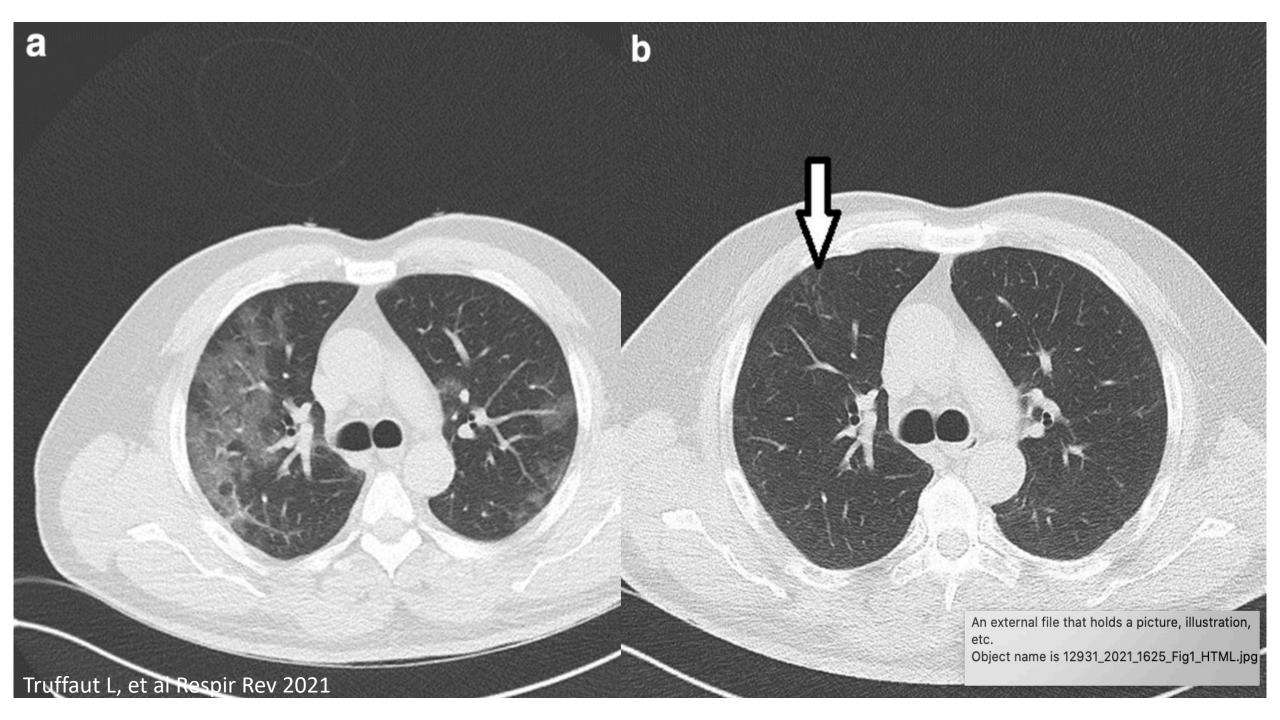
Respiratory Sequelae in Adults

Adults 3 months
 post severe COVID 19 infections -- PFTs

PFT interpretation

6MWDT, n = 20

 $(mean \pm SD)$

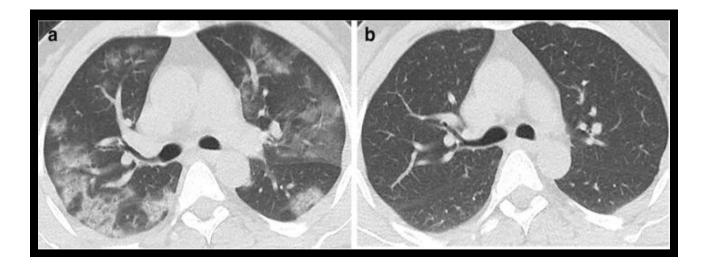

FEV	1 (%)	89.4 ± 15.7
FVC	(L)	3.38 ± 0.81
FVC	(%)	83.64 ± 16.9
FEV	1/FCV	0.86 ± 0.06
DLC	O (%)	80.7 ± 14.3
Norn	nal	n = 10
Rest	rictive pattern	n=2
Rest	rictive + altered	n=4
diffu	sion	n = 6
Alter	red diffusion	
Dista	ance (m)	514.4 ± 93.1
Dista	ance (%)	73.5 ± 12.3
Dista	ance < 80%	n = 13
Desa	turation	n = 6

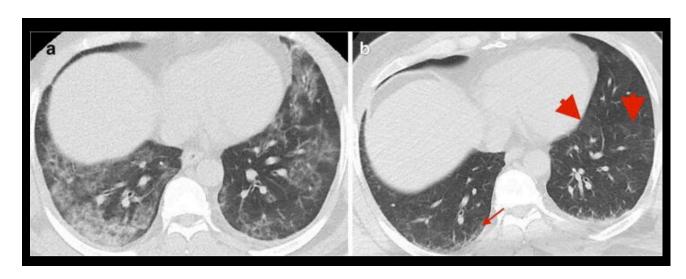
Truffaut L, et al Respir Rev 2021

Respiratory Sequelae in Adults

Adults 3 months
 post severe COVID 19 infections—CT
 findings

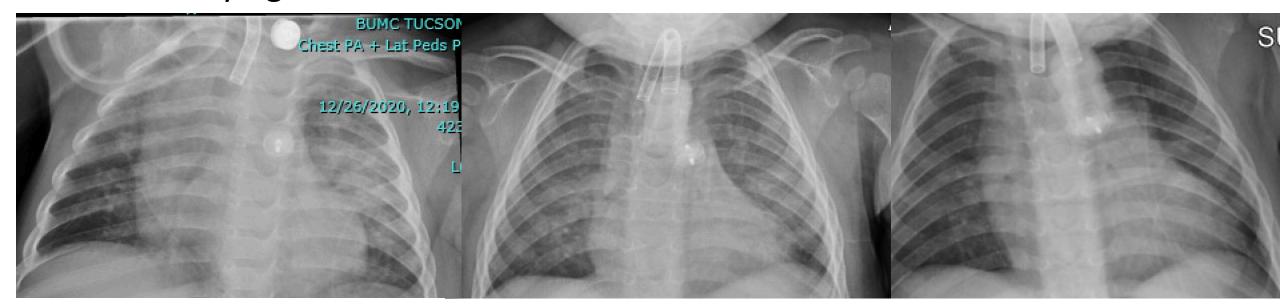
Chest CT Scan, n = 22	Baseline	3-months
Normal	n = 0	n=3
Number of affected segments in both lungs (mean \pm SD), score/20	17.2 ± 19	8.1 ± 10.1
Predominant abnormalities		
Ground glass opacities	n = 22	n=0
Consolidation	n = 16	n=2
Fibrosis	n = 9	n = 19
Abnormalities distribution		
Peripheral location	n = 8	n = 7
Diffuse location	n = 14	n = 12
Lower lobes predominant involvement	n = 12	n=11




Adults with COVID-19 Pneumonia

Minimum 3 month follow up

57.7% with full resolution (top)


42.3% with residual disease (bottom)

Pulmonary Sequelae in Children

- No data
- Symptoms clearly persist in some children
- Children are at risk for MIS-C
- Data from adults suggest we should be watchful, especially if underlying conditions

American Academy of Pediatrics Recommendations


- All patients who test positive for SARS CoV-2 infection need at least one follow up with primary care—after quarantine is over and before returning to physical activities
- If moderate to severe symptoms, should follow up in person. If mild symptoms, follow up virtually is o.k.
- Encourage vaccination
- Facilitate return to learning and activity with plan for extra supports and time as necessary. Educational make-up plans, communication

More Recommendations

- If a child had moderate to severe COVID, should have a screening EKG, American Heart Association screening or cardiology evaluation
- Watchfulness for MIS-C as typically this does not occur until 2 to 4 weeks after infection
- Monitor for ongoing symptoms:
- Respiratory: chest pain, cough, exercise induced dyspnea
- If ongoing for 3 months, get a CXR
- If 6 years or older, refer for pulmonary function testing
- Consider cardiopulmonary evaluation, thromboembolic evaluation

What Else--Control in Schools

- Frequent cleaning of surfaces
- Good ventilation
- Hand hygiene
- Face mask use
- Exclusion of sick children
- Vaccines

References

cdc.gov

COCA presentations (many of the slides)

State health offices

aap.org