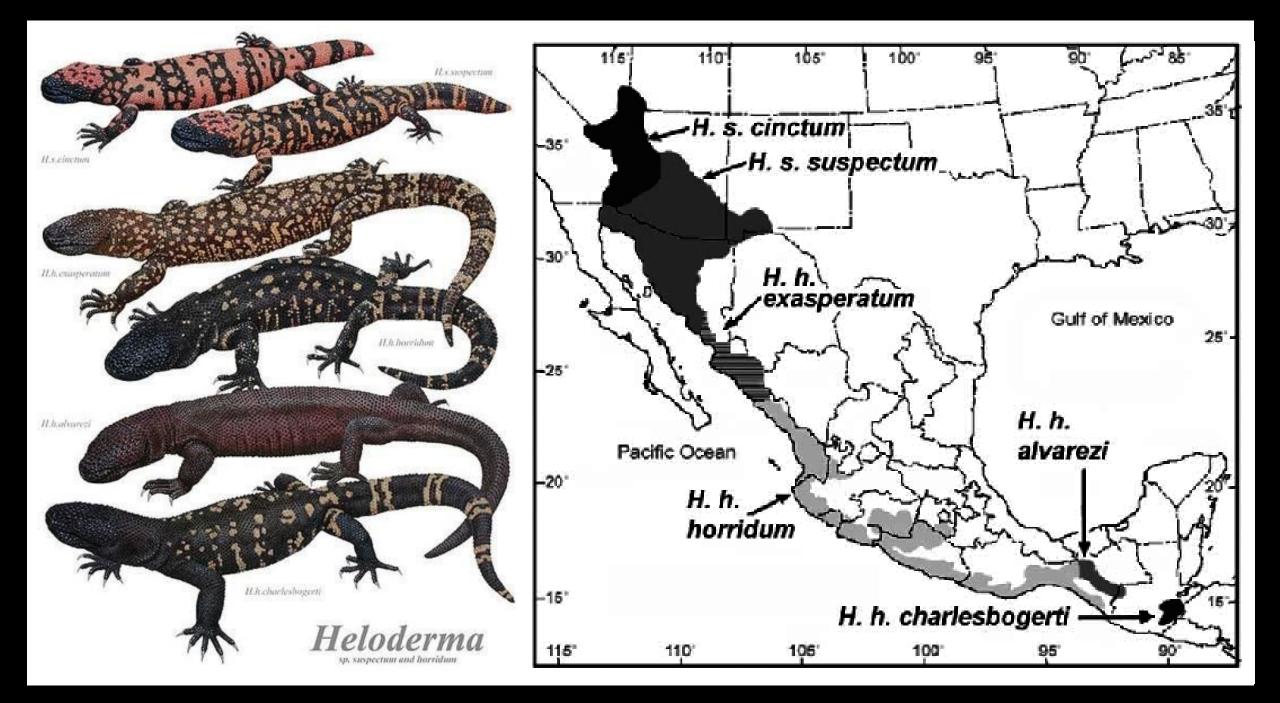
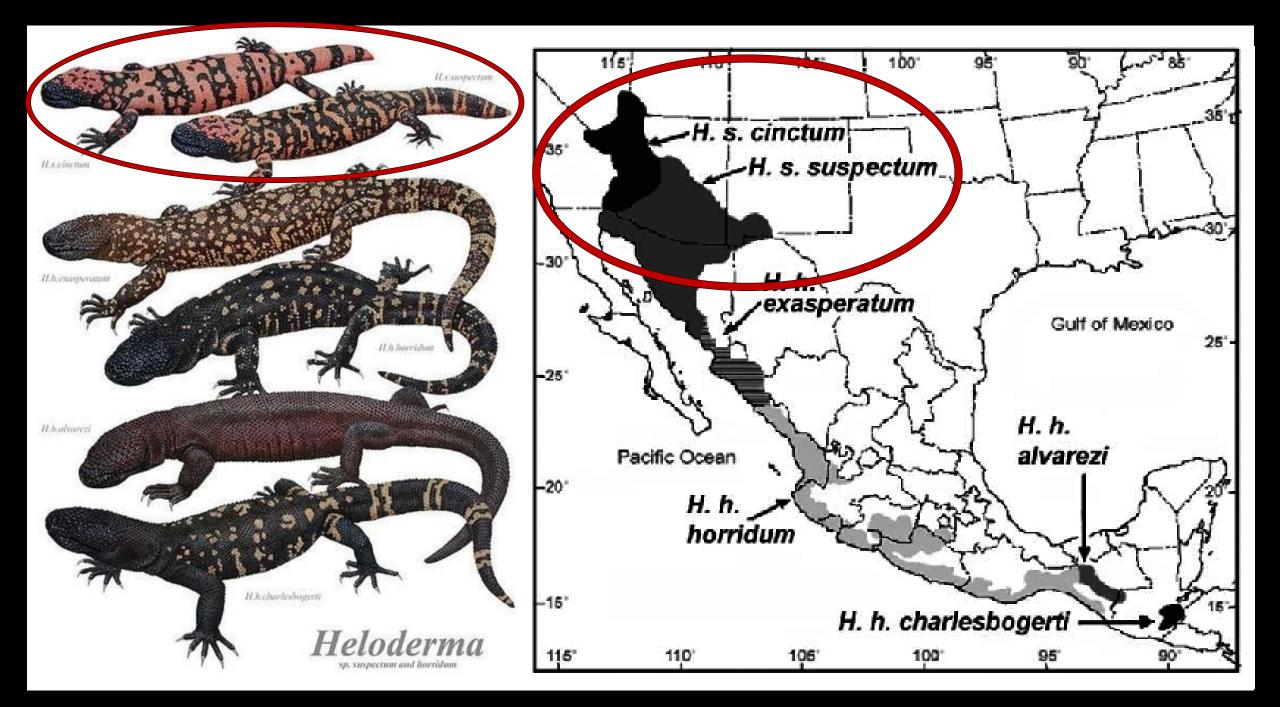

## **OUR LOCAL MONSTER** Venom and Envenomation of the Gila Monster




## Helodermatidae

- Greek word *helos* and *derma*
- Heloderma: Studded skin
  - Head of a nail or stud
- "Gila" monster
  - Gila River Basins
  - Arizona and New Mexico
- Heloderma suspectum
- H exasperatum
- H horridum
- H alvarezi
- H charlebogerti



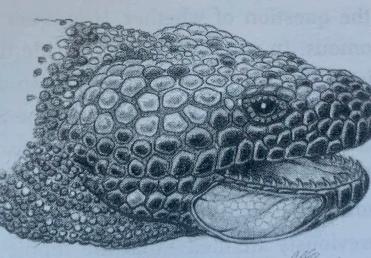




## Historical background of the Helodermatida

- 1577: (Hernandez) *Heloderma horridum* first described
- 1869: (E.D. Cope) "suspected" Gila monster was venomous: *Heloderma suspectum*
- 1907: (Goodfellow) "reptile was non-venomous" "bite of the monster is innocuous"
- 1913: (Loeb et al): 244 page text/11 contributors: venom biochemistry, effects on physiological systems in different organisms.
- 1920: Scientific community agreed that helodermatid lizards are venomous and no longer "suspected"

## Venom delivery system


- Multilobed venom glands in lower jaw, venom drains through ducts associated with each lobe.
  - Somewhat simple when compared to snakes
  - Defense vs pray
- Venom gland is not surrounded by compressor musculature
  - Unlike venomous snakes
- Movement/pressure from the jaw while biting causes venom to excrete at base of grooved teeth "venom conducting teeth" and capillary action carries venom into the wound.

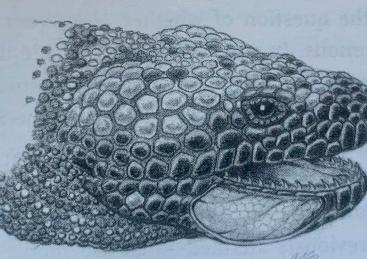


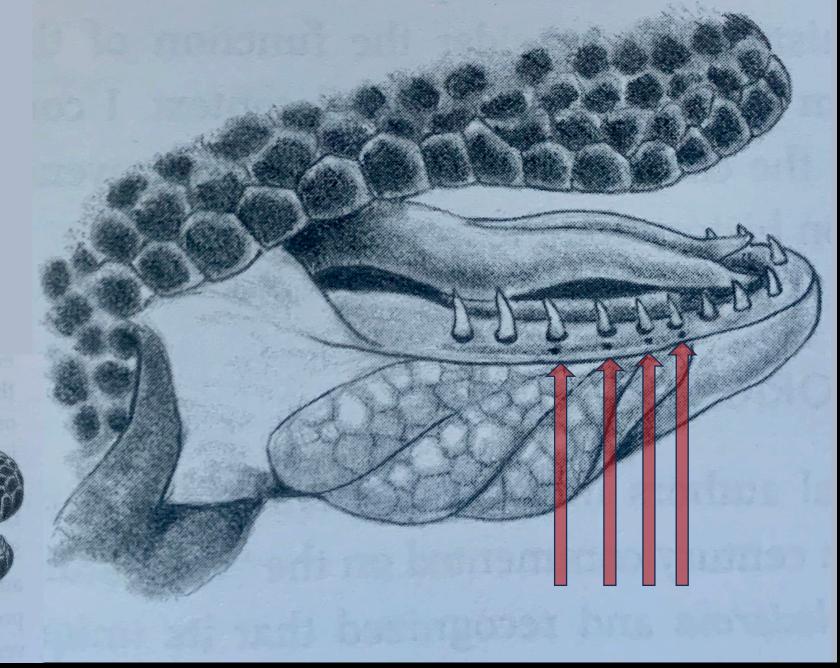
#### DANIEL D. BECK

WITH CONTRIBUTIONS FROM Brent E. Martin and Charles H. Lowe PHOTOGRAPHS BY Thomas Wiewandt FOREWORD BY Harry Greene





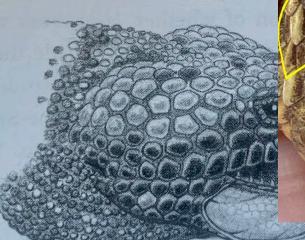


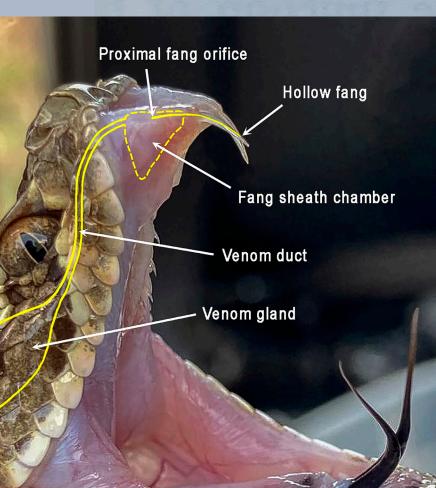



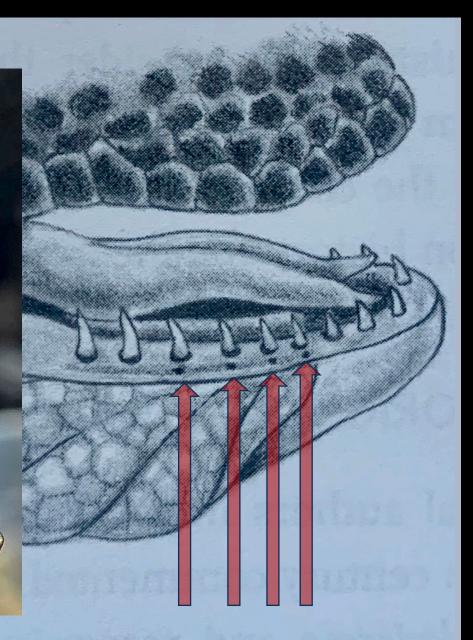

#### DANIEL D. BECK

WITH CONTRIBUTIONS FROM Brent E. Martin and Charles H. Lowe PHOTOGRAPHS BY Thomas Wiewandt FOREWORD BY Harry Greene





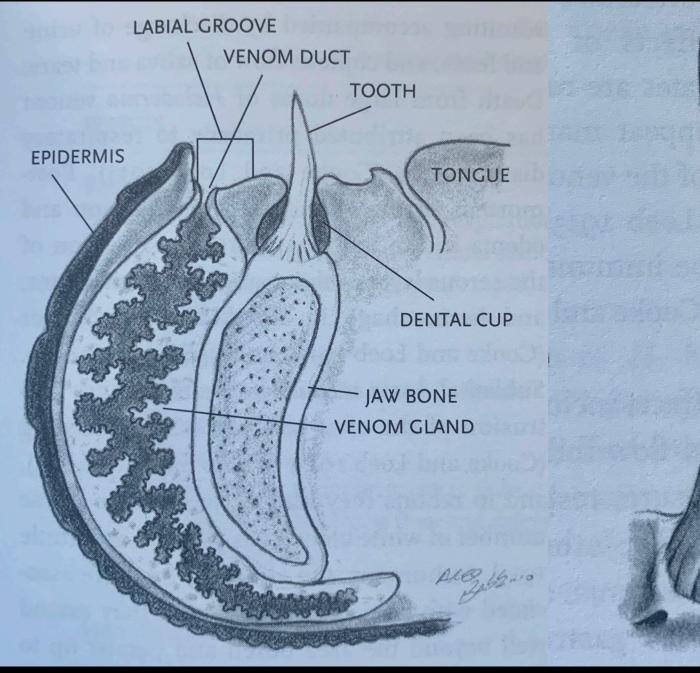





#### BIOLOGY OF Gila Monsters and Beaded Lizards

DANIEL D. BECK with CONTRIBUTIONS FROM Brent E. Martin and Charles H. Lowe PHOTOGRAPHS BY Thomas Wiewandt FOREword BY Harry Greene





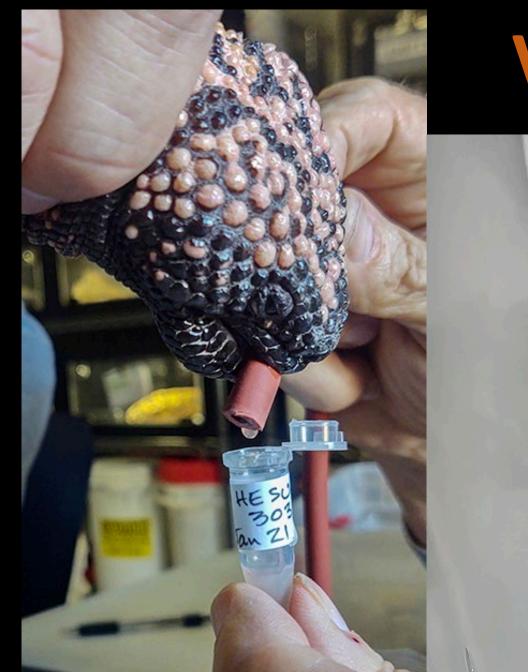





#### BIOLOGY OF Gila Monsters and Beaded Lizards

DANIEL D. BECK with CONTRIBUTIONS FROM Brent E. Martin and Charles H. Lowe PHOTOGRAPHS BY Thomas Wiewandt FOREword BY Harry Greene






## Helodermatida venom research

- 1897: (Santesson) Found two possible toxic compounds
- 1913: (Loeb et al): venom biochemistry, effects on physiological systems in different organisms
- 1960's: serotonin, amine oxidase, hyaluronidase, phospholipase A, kinin-releasing enzyme, kallikrein
- 1980's 1990s: Enzymatic activity, bioactive venom components identified. The start of drug discovery
  - (Eng et al 1992) *H suspectum*; exendin-4 most significant

## Helodermatida venom research

- Some of the most comprehensive experiments: Loeb (1913)
  - Hundreds of species
    - Invertebrates are essentially immune (unlike some snakes)
    - Ectotherms are less susceptible than endotherms
    - Vertebrates can be severe and varied
- LD 50: varies
  - *H suspectum* 0.4 2.7 mg/kg; *H horridum* 1.4-2.7 mg/kg
  - When injected into mammals; LD 50 is comparable to C atrox (Russel and Bogert 1981)
- Nonhuman mammals:
  - Respiratory, cardiovascular, hemorrhage, blood, smooth muscle, edema



# Venom constituents



## Hyaluronidase

#### Description/Action

Physiological effect

- Hydrolase enzyme
- Cleaves hyaluronic acid

- "Spreading factor"
- Facilitates diffusion of venom through connective tissues
- Edema effects of bites

## Serotonin

| Description/Action       | Physiological effect                                                                                                                                       |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Neurotransmitter hormone | <ul> <li>Mediates local processes</li> <li>Inflammation</li> <li>Vasodilation</li> <li>Smooth muscle activity</li> <li>Aggregation of platelets</li> </ul> |

## Phospholipase A2 (PLA2)

Description/Action

Physiological effect

- Hydrolase enzyme that act on fat molecules
- Catalyze hydrolysis of phospholipid glycerol backbone

- Five types of PLA2 isolated
- Effects of *Heloderma* PLA2 are unknown
- Snakes
  - Presynaptic membrane toxins

## Nerve Growth Factor

#### Description/Action

Physiological effect

- Induce nerve growth
- Degranulate mast cells

#### Unknown

• Degranulation of mast cells; thought to contribute to inflammation

## Helothermine

#### Description/Action

Physiological effect

- Peptide
- Blocks ion channels in cell membranes
  - Ca++ cardiac, skeletal muscles
  - Ca++ cerebellar tissues
- No enzymatic activity

#### • Mice

- Lethargy
- Partial paralysis of hind limbs
- Lowering of body temperature
  - Hence the name of toxin





## Kallikrein-like toxins SP

- Four types; three considered lethal toxins
- Cause pain
- Hypotensive hormones with powerful local physiological effects
- Cleave kinogens that release bradykinins
  - PAIN
  - Inflammation
  - Vasodilation of peripheral arterioles
  - Increase vascular permeability edema
  - Stimulate adrenaline increase heart rate

## 1 of 4 kallikrein-like toxin Gilatoxin

#### Description/Action

Physiological effect

- Serine protease glycoprotein
- 1<sup>st</sup> lethal toxin isolated
  - Hendon and Tu 1981
- Kiniogen and angiotensin

• Rats

- Hypotension
- Contraction of uterus smooth muscle
- LD50 decreases when administered in combination with other venom fractions
  - Synergistic

### 2 of 4 kallikrein-like toxin Horridum toxin

#### Description/Action

Physiological effect

- Glycoprotein similar to gilatoxin
- H horridum
- Lethal toxin
- Only hemorrhagic toxin isolated in helodermatid lizards

#### • Rats

- Hypotension
- Hemorrhage in internal organs
- Hemorrhage in eyes leading to exophthalmia

#### 3 of 4 kallikrein-like toxin "Novel" lethal toxin

#### Description/Action

Physiological effect

- H horridum
- Lethal toxin
- Isolated in 1988 and still unnamed through 2005
- Lowest LD50

• Mice

- Suppresses contraction of diaphragm
- No hemolytic, hemorrhagic, proteolytic, PLA2, or enzymatic activity

### 4 of 4 kallikrein-like toxin Helodermatine

| Description/Action |
|--------------------|
|--------------------|

Physiological effect

- Serine protease glycoprotein
- H horridum
- Non lethal

- Rabbits
  - Dose dependent decrease in arterial blood pressure









## Bioactive peptides

- Five types
- 1980's research: helodermatid lizards caused secretory response from pancreatic acini
  - Similar structure and action to VIP
  - VIP powerful relaxant of smooth muscle, mediates secretion of water and electrolytes by small/large intestines
- 1990's research isolated exendins
  - Peptides from the exocrine glands of *Heloderma suspectum*
  - Endocrine actions
  - GLP-1 receptors
    - Insulin release and glucose metabolism

#### 1 of 5 bioactive components Helospectin I & II (exendin-1)

Description/Action

Physiological effect

• Peptides from exocrine gland having endocrine function

- Simulate amylase release from pancreas
- VIP activity

### 2 of 5 bioactive components Helodermin (exendin-2)

| Description/Action                                                            | Physiological effect                                                                                                                                                                     |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Peptide with stable structure</li> <li><i>H suspectum</i></li> </ul> | <ul> <li>VIP effects</li> <li>Dogs <ul> <li>Prolonged systemic hypotension</li> </ul> </li> <li>Rats <ul> <li>Dose dependent hypotension</li> <li>Via K+ channels</li> </ul> </li> </ul> |

#### 3 of 5 bioactive components Glucagon-like 3 (exendin-3)

#### Description/Action

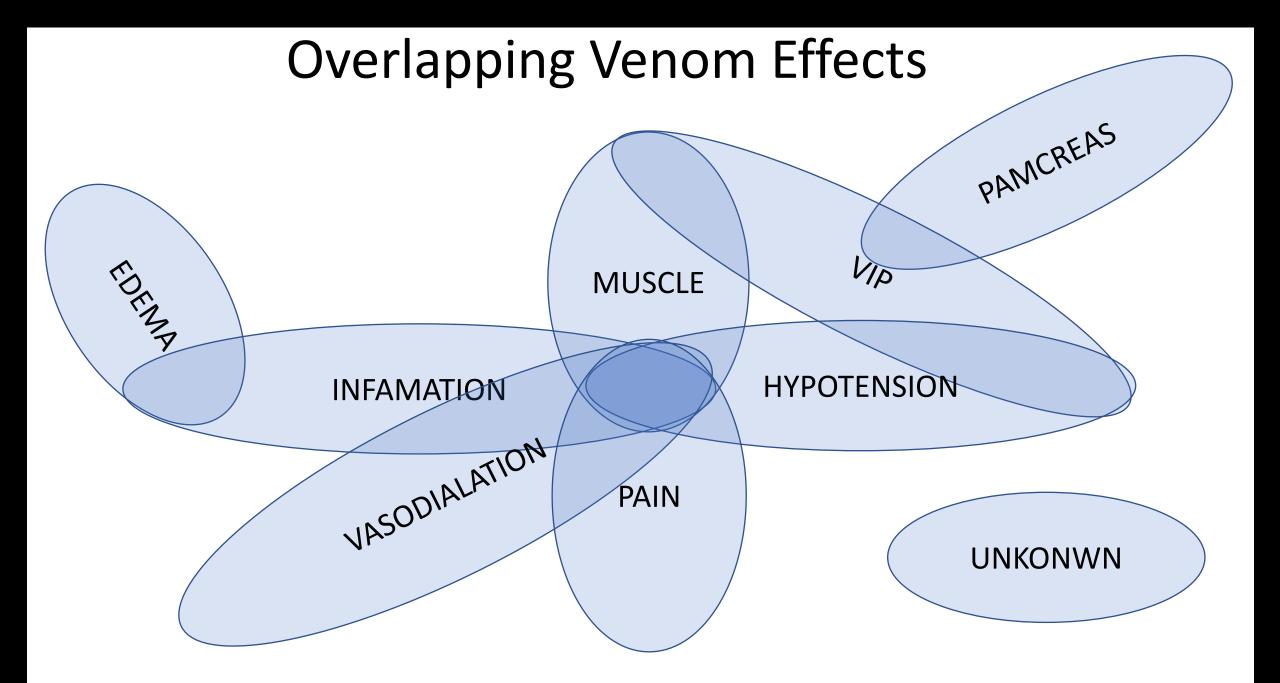
Physiological effect

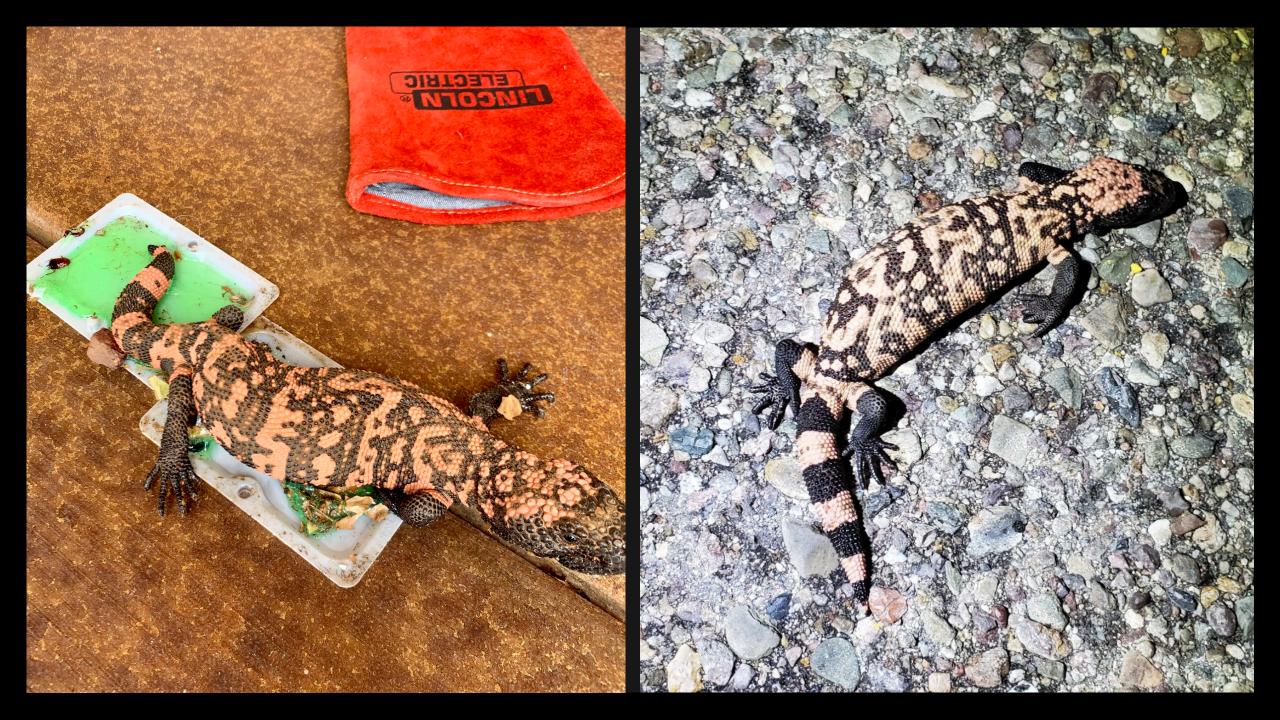
- Peptide
- H horridum

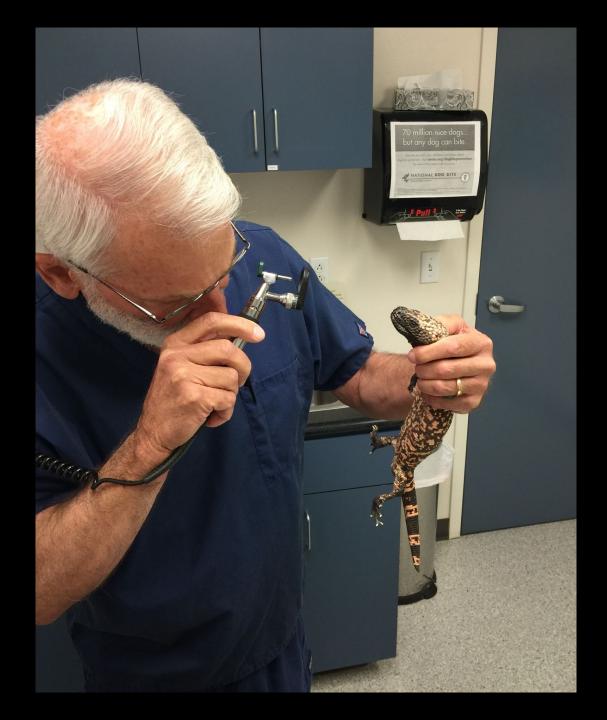
- Amylase release from pancreas
- Interacts with exendin receptor and mammalian VIP receptors

### 4 of 5 bioactive components Exenatide (exendin-4)

#### Description/Action


Physiological effect

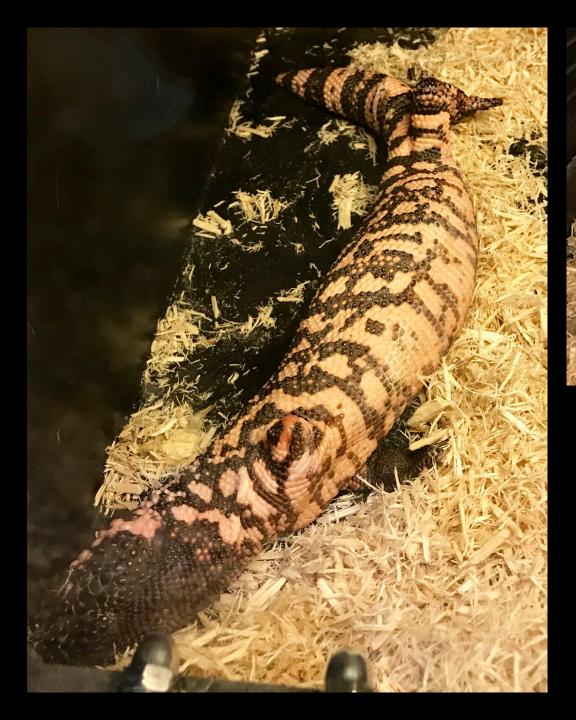

- Peptide
- H suspectum
- GLP-1 in humans has short half life
- Extendin-4 has long biological action


 Induces insulin release through activation of glucagon-like peptide-1 (GLP-1) receptor

# 5 of 5 bioactive components Gilatide

| Description/Action              | Physiological effect                                                                             |
|---------------------------------|--------------------------------------------------------------------------------------------------|
| • Fragment of exendin-4 peptide | <ul> <li>Acts on GLP-1 receptor</li> <li>Rodents <ul> <li>Improves memory</li> </ul> </li> </ul> |



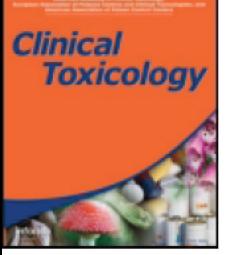







# **ENVENOMATION**

- Most can be avoided
  - No antivenom
- Symptomatic treatment
   \*Can be significant\*

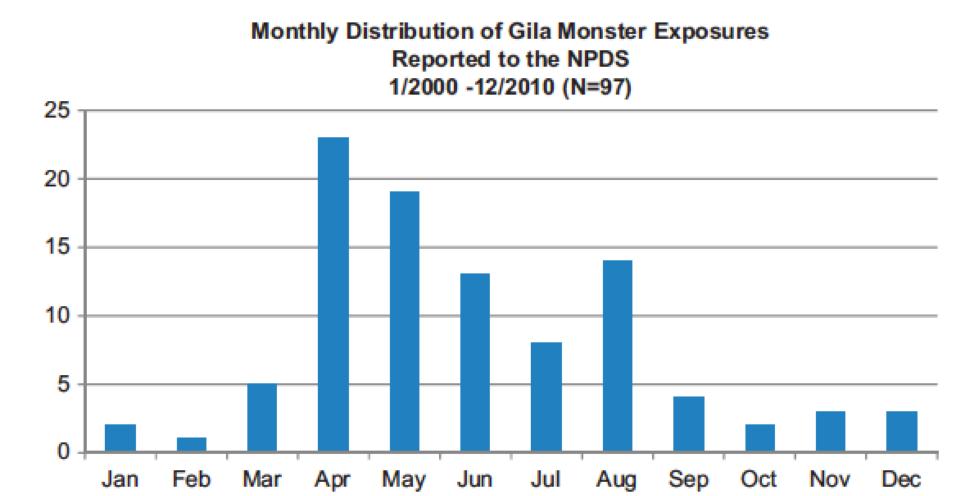



## Envenomation

# Let sleeping <del>dogs</del> Gilas lie








Clinical Toxicology, 53:1, 60-70



#### Gila monster (*Heloderma suspectum*) envenomation: Descriptive analysis of calls to United States Poison Centers with focus on Arizona cases

Robert French, Daniel Brooks, Anne-Michelle Ruha, Farshad Shirazi, Peter Chase, Keith Boesen & Frank Walter Retrospective review of calls concerning Gila's between January 1, 2000 – October 31, 2011 using the American Association of Poison Control Centers National Poison Data System



| The Arizona Poison and Drug<br>Information Center<br>Tucson, Arizona |                                          | Banner Good Samaritan Poison<br>and Drug Information Center<br>Phoenix, Arizona                                               |
|----------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 215                                                                  | Reports88Information Only79Dogs2Cats1Cow | 98 Reports<br>55 Information Only<br>11 Dogs<br>2 Cats                                                                        |
| 45                                                                   | Human exposure records<br>1 Not a bite   | <ul> <li>30 Human exposure records</li> <li>1 Duplicate report</li> <li>1 Not a bite</li> <li>1 Not a Gila monster</li> </ul> |
| 44                                                                   | Gila monster bite reports                | 27 Gila monster bite reports                                                                                                  |

Gila Monster Bite Reports to Arizona Poison and Drug Information Centers

71 Gila monster bite reports

1 Case was reported to both centers and was combined.

70 Unique Gila monster bite reports were included for this review.

#### Table 1. Anatomic sites of Arizona gila monster bites.

| Site of bite                   | Number |
|--------------------------------|--------|
| Hand, Finger, or Thumb         | 46     |
| Unknown or not documented      | 8      |
| Foot or Heel                   | 6      |
| Arm                            | 3      |
| Neck                           | 1      |
| Neck and finger                | 1      |
| Finger and forearm             | 1      |
| Finger and thumb               | 1      |
| Both thumbs                    | 1      |
| Upper extremity, not specified | 1      |
| Trunk                          | 1      |
| Total Arizona PCC cases        | 70     |

## Now the who...any guesses?

- 70 bites 58 had a Y chromosome
- 54 bites involved upper extremity
- 8 patients <18 yo
- 11 work related
- 28 evaluated at health care facility but not admitted
- 11 admitted to hospital
  - 5 to the ICU
  - 6 edema of airway structures
  - 3 required emergent airway management (1 cricothyrotomy)
  - No deaths

### Effects of envenomation reported

| Descrip                                                                                                          | tion from patient                                                                                                       | Physiological effect recorded in EMR                                                                                                                                            |                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Pain</li> <li>Dizziness</li> <li>Numbness</li> <li>Tingling</li> <li>Burning</li> <li>Drowsy</li> </ul> | <ul> <li>Abdominal cramps</li> <li>Anxiety</li> <li>Spasms</li> <li>Nausea</li> <li>Syncope</li> <li>Dyspnea</li> </ul> | <ul> <li>Edema</li> <li>Puncture/Bleeding</li> <li>Erythema</li> <li>Ecchymosis</li> <li>Lymphangitis</li> <li>Tachycardia</li> <li>Bradycardia</li> <li>Diaphoresis</li> </ul> | <ul> <li>Hypertension</li> <li>Hypotension</li> <li>Airway edema</li> <li>Fasciculation</li> <li>Vomiting</li> <li>Incontinence fecal</li> <li>Incontinence urine</li> </ul> |

## Some of the interesting cases

- 36 yo M: hand: documented incident on video, bite lasted 42 seconds
  - Required intubation, pressors
- 26 yo M: neck and finger: placed Gila on shoulder, bit on neck, Gila fell to ground, he picked it up and placed in his hat, then bit through hat on finger
  - Tongue swollen, difficulty swallowing/breathing
- 46 yo M: neck: no description
  - Required intubation, pressors
- 29 yo M: arm: stated Gila was "moving towards girlfriend" so he placed his arm between them to protect her.
  - Diaphoretic, edema entire arm and airway, tachycardia

### What about the ladies?

- 26 yo F: hand: researcher bitten through protective gear
- 45 yo F: hand: zoo employee performing procedure
- 49 yo F: finger: bitten while removing Gila from another individual
  - (PROBABLY SOMEONE WITH A Y CHROMASOME)

## Conclusion

- Kallikrein-like toxins hydrolize kininogen and produce bradykinin
  - Pain
  - Local edema including airway structures
    - Can be delayed
  - Hypotension
- Arizona Gila bites: 15-16% admitted to hospital
  - 4% REQUIRED emergent airway managment
- Nationally Gila bites: 24% admitted to hospital
- Gila bites are uncommon
  - Managed by AZPDIC or in ED and not admitted to the hospital
  - Edema of airway is infrequent (8%) but potentially life threatening
  - Consider 12h observation

34 yr old man, died from complications from a bite from his pet Gila monster on February 16, 2024, less than four days after being bitten.

#### LAKEWOOD MAN DIES AFTER BITE FROM GILA MONSTER AUTOPSY RELEASED



#### LIZARD BIT HAND FOR 4 MINUTES

#### WAITED 2 HOURS TO CALL 911

COMPLICATIONS FROM THE GILA MONSTER VENOM

# References

- French, R, Brooks D. 2014. Gila monster (Heloderma suspectum) envenomation: Descriptive analysis of calls to United States Poison Centers with focus on Arizona cases. Clin tox. 53:1: 60-70.
- Kristian, W.S, Thomas, R. D. 2015. Characterization of the gila monster (Heloderma suspectum suspectum) venom proteomw. J. Proteomics 117: 1-11.
- Nielsen, V.G., Frank, N. 2019. The kallifrein-like activity of Heloderma venom is inhibited by carbon monoxide. J. Thromb. Thrombolysis. 47: 533-539.
- Mackessy, S. P. 2010. The field of reptile toxinology: snakes, lizards and their venoms. Pp. 3-23. Handbook of Venoms and Toxins of Reptiles. CRC Press/Taylor & Francis Group, Boca Raton, Florida.
- Furman, B.L. 2011. The development of Byetta (exenatide) from the venom of the Gila monster as an antidiabetic agent. Toxicon. 59: 464-471.
- Hoshino, M., Yanaihara, C. 1983. Primary structure of helodermin, a VIP-secretin-like peptide isolated from Gila monster venom. FEBS. 178: 233-239.
- Shufeldt, R.W. 1891. Medical and other opinions upon the poisonous nature of the bite of the Heloderma. NY Med J. 148-244.
- Meier, J., White, J. 1995. Handbook of: Clinical toxicology of animal venoms and poisons. Pp. 361-367. Informa Healthcar, USA.
- Schwandt, H.J. 2019. The Gila Monster Heloderma suspectum: Natural history, husbandry and propagation. Pp. 137-139. Frankfurt am Main. Germany.
- Beck, D.D. 2005. Biology of Gila Monsters and Beaded Lizards. Pp. 41-62. University of California Press.

# **Only in the "Old Pueblo"** Tucson Wall Art - Euclid and Grand

