Using Health Systems Research and Improvement Science to Improve and Protect the Healthcare Workforce

Healthcare Workforce Stress, Burnout, and Resiliency Panel
HRSA

June 17, 2022

Paul Barach B.Med.Sci., MD, MPH, Maj (Ret.)
Thomas Jefferson University College of Population Health, USA
Sigmund Freud University, Vienna, Austria
pbarach@gmail.com
Global Health Quality – Recent Reports
High Quality Health System Framework
Aims in Redesigning the Healthcare Delivery(Learning) Systems

Health outcomes for patients, carers, and population

Health status, patient experience, illness burden

Professional development

Competence, pride, joy

Patients and Clinical Microsystems

High reliability system performance

Quality, safety, reliability, value

Adapted from Batalden, PB; Davidoff, F. What is “quality improvement” and how can it transform health care?” Qual Saf Health Care 16(1): 2-3, 2007
WHAT IS IMPLEMENTATION SCIENCE

• **Implementation Science** is the study of factors that influence the full and effective use of innovations in practice.

• **Implementation** is specified set of activities designed to put into practice an activity or program of known dimensions.

MODEL FOR IMPROVEMENT AND IMPLEMENTATION

Improvement Questions

- What are we trying to accomplish?
- How do we know that a change is an improvement?
- What change can we make that will result in improvement?

Implementation Questions

- What implementation outcomes are critical to implementing the change?
- What factors impede the achievement of these outcomes?
- What implementation strategies are the most appropriate to address these factors?
Supporting the Quadruple Aim Using Simulation and Human Factors During COVID-19 Care

Ambrose H. Wong, MD, MSEd1, Rami A. Ahmed, DO, MHPE2, Humera Khan, MD,1 Patrick G. Hughes, DO, MEHP2, Christopher Eric McCoy, MD, MPH1, Marc A. Auerbach, MD, MSci6,7, and Paul Barach, MD, MPH8,9

Abstract
The health care sector has made radical changes to hospital operations and care delivery in response to the coronavirus disease (COVID-19) pandemic. This article examines pragmatic applications of simulation and human factors to support the Quadruple Aim of health system performance during the COVID-19 era. First, patient safety is enhanced through development and testing of new technologies, equipment, and protocols using laboratory-based and in situ simulation. Second, population health is strengthened through virtual platforms that deliver telehealth and remote simulation that ensure readiness for personnel to deploy to new clinical units. Third, prevention of lost revenue occurs through usability testing of equipment and computer-based simulations to predict system performance and resilience. Finally, simulation supports health worker wellness and satisfaction by identifying optimal work conditions that maximize productivity while protecting staff through preparedness training. Leveraging simulation and human factors will support a resilient and sustainable response to the pandemic in a transformed health care landscape.

Keywords
health care simulation, patient safety, Quadruple Aim, COVID-19, system preparedness

Introduction
Coronavirus disease 2019 (COVID-19) has uniquely stressed health care systems, policy makers, and health care workers throughout the world as they face the worst health and economic crises of our lifetimes. Administrators are rapidly navigating their institutions through uncertain times, providing leadership and strategic plans to manage numerous evolving systems threats. Many of these plans run counter to the accepted mantra in modern times, including intentional cancelations of profitable elective procedures and layoff or furloughs of dedicated medical staff during the pandemic.1

The Triple Aim of health system reform addresses ongoing and future challenges faced by the health care sector, with recent calls for expansion to a Quadruple Aim1 to include considerations and protection for staff. These 4 interdependent goals consist of (1) enhancing patient experience and safety, (2) improving population health, (3) reducing costs and preventing loss of revenue, and (4) improving wellness and satisfaction of health care workers. The fourth Aim incorporates the increasing understanding that excellent health care is not possible without a physically and psychologically safe and healthy workforce. COVID-19 has created unique threats and unanswered challenges to each element of the Quadruple Aim (Table 1).

Human factors4 is a scientific discipline that addresses the complex interwoven variables that affect health care workers’ ability to deliver safe,

The Quadruple Aim
Cornerstone of Health Workforce Resiliency

Health Worker Safety, Wellness, and Satisfaction
• Ensuring safe practices and avoiding overstressing health workers
• Building resilience and preparedness in health workers as expectations change

Patient Safety and Experience
• Ensuring safety of new protocols and processes
• Supporting patient-centered communication and decision-making
• Improving teamwork and communication

Population Health
• Optimizing care with adjusted health delivery models/systems
• Continuing education for trainees during social distancing measures

Reducing Costs and Preventing Loss of Revenue
• Adopting telehealth in a cost-effective manner
• Preventing iatrogenic and hospital-associated COVID-19 infection
• Developing safe equipment recycling and repurposing processes

Table 1. Contributions of simulation and human factors to the Quadruple Aim during the COVID-19 era

<table>
<thead>
<tr>
<th>Quadruple Aim</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Safety and Experience</td>
<td>Development and testing of new technologies, equipment, and protocols using laboratory-based and in situ simulation</td>
</tr>
<tr>
<td>Population Health</td>
<td>Virtual platforms delivering telehealth and remote simulation ensuring readiness for personnel deploying to new clinical units</td>
</tr>
<tr>
<td>Reducing Costs and Preventing Loss of Revenue</td>
<td>Usability testing of equipment and computer-based simulations predicting system performance and resilience</td>
</tr>
<tr>
<td>Health Worker Safety, Wellness, and Satisfaction</td>
<td>Simulation identifying optimal work conditions for maximizing productivity while protecting staff through preparedness training</td>
</tr>
</tbody>
</table>
Key Health Services Research Milestones

<table>
<thead>
<tr>
<th>Year</th>
<th>Researcher</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td>Donabedian</td>
<td>Quality of services is directly related to work satisfaction</td>
</tr>
<tr>
<td>1970</td>
<td>McGrath</td>
<td>Defined the term work stress</td>
</tr>
<tr>
<td>1974</td>
<td>Freudenberger</td>
<td>Talks of work disease and burnout syndrome which he found more frequent in healing professionals</td>
</tr>
</tbody>
</table>
| 1982 | Maslach | Defined **burnout syndrome** by 3 characteristics—known as the Maslach Burnout Inventory (MBI) and is considered the gold standard:
 - Emotional exhaustion
 - Depersonalization
 - Lack of personal fulfillment |

From: Constance Ange. Clinician burnout in Contemporary Medicine
Burnout Defined

“An erosion of the soul caused by a deterioration of one's values, dignity, spirit, and will.”*

Burnout by specialty: 2011 and 2014 Data

Shanafelt, Mayo Clinic Proceedings; 2015
Consequences of Burnout

Shanafelt, Mayo Clinic Proceedings 2016
Drummond D. Fam Pract Manag. 2015 Sep-Oct;22(5):42-47
Figure: A model of physician ill health and the links with health-care system outcomes, and potential interventions to improve physician and system outcomes. Solid lines are empirically supported; broken lines are potential links.
Impact of COVID on HCW Lives and Wellness

- 120,000 HCW dead
- 2,000,000 long covid
- Millions quitting

Where Most Health Workers Have Died From Covid-19

<table>
<thead>
<tr>
<th>Country</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico</td>
<td>1,320</td>
</tr>
<tr>
<td>United States</td>
<td>1,077</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>649</td>
</tr>
<tr>
<td>Brazil</td>
<td>634</td>
</tr>
<tr>
<td>Russia</td>
<td>631</td>
</tr>
<tr>
<td>India</td>
<td>573</td>
</tr>
<tr>
<td>South Africa</td>
<td>240</td>
</tr>
<tr>
<td>Italy</td>
<td>188</td>
</tr>
</tbody>
</table>

*As of September 03. Data represents a snapshot given that definitions of health workers and Covid-19 deaths vary between countries.
Source: Amnesty International
Worker Safety and Wellness in the time of COVID

Fig 2. Collection of 198 photographs of healthcare workers who died in Mexico as a result of COVID-19 (Courtesy of MILENIO. Author: Arturo Black Fonseca).

Revisiting safe airway management and patient care by anaesthetists during the COVID-19 pandemic

Tom C. R. V. Van Zundert1, Paul Barach2,3,4 and André A. J. Van Zundert5,5,5

1Department of Anaesthesia and Critical Care, Onze-Lieve-Vrouw Hospital, Aalst, Belgium, 2Department of Anaesthesia, Children’s Research Center of Michigan, Detroit, MI, USA, 3Wayne State University School of Medicine, Detroit, MI, USA, 4University of Queensland, Brisbane, Queensland, Australia and 5Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
Competing Organizational and Financial Priorities
The Ideal Future Medical Center—What is missing??

CENTRAL ILLUSTRATION Characteristics of the Successful Academic Medical System

- Entrepreneurial
- Innovative
- System Oriented
- Therapeutically Advanced
- Partnered & Aligned
- Community Focused
- Efficient
- High Quality
- Performance Based
- Patient Centered

SPECIAL ARTICLE

WHAT SETS THE GOALS OF PUBLIC HEALTH?*

SIR GEOFFREY VICKERS, V.C.

LONDON, ENGLAND

I AM deeply grateful to those who have honored me by this invitation; the more so, because I am a layman, unqualified in the sciences of your field. I comfort myself with the reflection that we are all laymen for most of our time, especially in a field so close as yours is to problems of decision and action. And further, that it is as laymen, not as academics, that we make our most daring speculations. The scientist with a reputation to lose may not speculate too far beyond the evidence, at least in public, but the layman with a job to do must make whatever assumptions are needed for decision, and he is content if he can reduce by even a little the random element in his behavior. So it is not inappropriate that it should be a layman who invites you to pursue a speculation that will take us beyond the boundaries of the known, even beyond the scope of our present conceptual apparatus, but never beyond the challenges of practical life.

I ask what sets the goals of public health. I do not ask how we choose them, for manifestly our choice is only one element in a manifold process. When we open our eyes to the scene around us, we find goals already set. Policies are being implemented; institutions are in action with all the historical momentum of buildings and establishments. Men are in mid-career. Budgets, even budget headings, have acquired prescriptive rights. This dynamic configuration is resistant to sudden change. So the most obvious answer to my question springs to mind at once. History sets the goals of public health. We influence them no more and no less than we influence the course of history.

The process of interaction and mutual adaptation that we call history is an obscure though familiar mystery. Looking into the future we see a widening vista of possibilities. Tomorrow is almost committed, but next year, ten, twenty years hence, what might not be possible? Yet, when we look into the past, the vista seems to narrow from past to present. We see a thin line of actualities detaching itself from all that might have been, and those who will someday look back over what is now the uncommitted future will see the same. Of all that competes for realization, only a tiny fraction is realized and in the process excludes a host of alternatives. The eternal enigma of history is: “Why from all these possibilities did these

*Presented at a public-health forum at Harvard School of Public Health, Boston, November 26, 1957. Published simultaneously in the Lancet (March 22, 1958) by special arrangement.
Vickers suggests that in many respects that redefining is core to our very function as public health scientists and policy makers:

“For public health has a unique opportunity, as well as a duty, to clarify our understanding of health and disease, and hence our attitude towards it.”

So how do we make the healthcare workforce resiliency central to ALL health reform and health systems strengthening?
What is ‘Vision Zero?’

• Vision Zero is a strategy to eliminate all traffic fatalities and severe injuries, while increasing safe, healthy, equitable mobility for all.

Applied to healthcare workforce resiliency

• Strengthening Vision Zero plans to support health workforce physical and emotional injury reductions and health improvements
How does Vision Zero differ from traditional Healthcare Workforce approaches?

1. Reframing HCW burnout as preventable
2. Focusing on systems failure, workflow redesign
3. Reducing the impact of known stressors
4. Adopting a Safe Systems approach
5. Data-driven decision-making
6. HCW wellness as a social equity issue
“If an error is possible, someone will make it. The designer must assume that all possible errors will occur and design so as to minimize the chance of the error in the first place, or its effects once it gets made”

A Social-Technical Model to Improve Staff Wellness

Figure 1.
SEIPS 2.0 model.

Adapted from Carayon et al.
Workflow Redesign: Work as done vs Work as imagined
The Key Roles of Social Sciences in Helping to Improve HCW Wellness

Making Social Science Matter

Why social inquiry fails and how it can succeed again

BENT FLYVBJERG
Work Environment is Key Driver of Burnout
The coronavirus has brought unprecedented changes to health care and medical education in the United States. The coronavirus disease 2019 (COVID-19) pandemic is emerging as nothing less than an “existential crisis” that is threatening to reshape American society. By mid-December more than 74 million cases of COVID-19 have been confirmed throughout the world with more than 1.6 million deaths. In the months since the first US case of COVID-19 was diagnosed in February 2020, the disease has resulted in nearly 17 million individuals infected and more than 300,000 deaths. In March 2020, during the peak of the pandemic in New York City, the Association of American Medical Colleges (AAMC) and the Liaison Committee on Medical Education issued guidance that medical students should not be involved in the care of patients with COVID-19 or persons under investigation, and many medical schools near the early epicenter of the pandemic discontinued clinical rotations. Concurrently, several medical schools and a few US states initiated plans for senior medical students to graduate early and support the growing clinical demands due to COVID-19. Medical students removed from clinical settings initiated novel efforts for voluntary contributions to assist with the health care crisis, such as at the COVID-19 Student Service Corps at Columbia University Irving Medical Center. Residents and fellows in a range of acute care settings continued to triage patients with symptoms that could be COVID-related and provided care for COVID-19—positive patients.

The practice of medicine carries inherent risks, especially during outbreaks of highly contagious diseases such as Ebola, H1N1, tuberculosis, and COVID-19. Exposure risks remain and extend to medical students and resident/fellows functioning in clinical settings and create ethical dilemmas around service vs potential risks of illness. At the time of an unprecedented crisis in the US health care system, institutional leaders and medical educators are tasked with meeting patient care demands and ensuring the health and well-being of learners across the medical education continuum while preventing stagnation in their education and promoting medical students and residents’ professional growth. The 1980’s HIV/AIDS epidemic was the first major infectious disease outbreak during which residents’ exposure to a contagious disease was analyzed with an emphasis on physicians’ “duty to treat” in spite of personal fears and perceived risks. The debate about exposing learners to a dangerous infectious disease reemerged during the 2003 to 2004 severe acute respiratory syndrome (SARS) outbreak. When patients with the Ebola virus entered the US health care system, the leaders of several institutions that received these patients decided that medical students and residents would not be involved in their care. Given the spread of the virus and its lingering presence, key considerations going forward include whether and to what extent medical students and residents/fellows should be involved in caring for patients with COVID-19, how this will affect their learning.
ORIGINAL RESEARCH

Infectious Disease

An international survey of healthcare workers use of personal protective equipment during the early stages of the COVID-19 pandemic

Bory Kea MD, MCR 1 | Alicia Johnson 2 | Amber Lin MS 1 | Jodi Lapidus 2 | Jennifer N. Cook 1 | Calvin Choi MA, MHA 1 | Bernard P. Chang MD, PhD 4 | Marc A. Probst MD, MS 3 | Joel Park MD, MS 6 | Clare Atzema MD, MSc 8 | Blanca Coll-Vinent MD, PhD 9 | Giorgio Constantino 10 | Dar’ya Pozhidayeva 7 | Amy Wilson MPH 7 | Adrienne Zell PhD 7 | Matt Hansen MD, MCR 1

1 Center for Policy and Research in Emergency Medicine, Oregon Health and Science University Department of Emergency Medicine, Portland, Oregon, USA
2 Biostatistics and Design Program, Oregon Health and Science University-Portland State University School of Public Health, Portland, Oregon, USA
3 Center for Health Systems Effectiveness Research, Oregon Health and Science University Department of Emergency Medicine, Portland, Oregon, USA
4 Department of Emergency Medicine, Columbia University Irving Medical Center, New York, New York, USA
5 Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
6 Department of Emergency Medicine, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA
7 OHSU Evaluation Core, Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon, USA
8 Sunnybrook Health Sciences Centre, ICES, and University of Toronto, Toronto, ON, Canada
9 Hospital Universitari Clinic, Barcelona, Spain
10 Dipartimento di Medicina Interna, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy

Correspondence
Matt Hansen, MD, MCR. Center for Policy and Research in Emergency Medicine, Oregon Health & Science University, 3180 SW Sam Jackson Park Rd, Portland, OR 97239, USA. Email: hansemat@ohsu.edu

Funding and support: By JACEP Open policy, all authors are required to disclose any and all commercial, financial, and other relationships in any way related to the subject of this article as per ICMJE conflict of interest guidelines (see www.icmje.org). The authors have stated that no such relationships exist.

Abstract

Objective: Little is known regarding the specific ways personal protective equipment (PPE) has been used and reused during the coronavirus disease 2019 (COVID-19) pandemic. The objective of this study was to evaluate the patterns of PPE use and the impact of PPE availability on the attitudes and well-being of an international population of healthcare workers.

Methods: This was an online, cross-sectional survey of healthcare workers. The survey was disseminated internationally using social media, specialty society listserves, and email augmented by snowball sampling to healthcare workers who provided direct care to patients with suspected or confirmed COVID-19. The survey was conducted between April 13 and May 1, 2020. The primary outcome was self-reported PPE use during aerosol-generating medical procedures. Other outcomes included PPE use during care for respiratory patients in general, PPE reuse, PPE decontamination, and healthcare worker impressions related to their work and the pandemic.

Overall, 1783 (80.1%) of providers reported general reuse of PPE, which was similar across US regions but less common in Canada, Italy, and Spain.

The most commonly reused item of PPE was the N95 respirator, with the majority of respondents who reused PPE reporting N95 reuse (n = 1157, 64.9%). Of the 1050 individuals who wore an N95 mask while performing an aerosol-generating medical procedure, 756 (72%) reported re-using an N95, and 344 (45.5%) reported reuse for >3 days.

Qualitative results identified several common themes, including (1) lack of availability of PPE, (2) fear and anxiety as a result of inadequate PPE, (3) potential exposure to family members, and (4) concerns regarding workload and pay.
Reuse of Personal Protective Equipment: Results of a Human Factors Study Using Fluorescence to Identify Self-Contamination During Donning and Doffing

Devin Does, MD,1,2 Paul Barach, B.MED.SCI., MD, MPH,1,3 Elisa Sarmiento, MSPH-EPAP,1,3 and Rami Ahmed, CO, MHPM1

1Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana, 2Jefferson College of Population Health, Thomas Jefferson University, Philadelphia, Pennsylvania, and 3University of Queensland, Brisbane, Queensland, Australia

Abstract—Background: At least 115,000 health and care workers (HCWs) are estimated to have lost their lives to COVID-19, according to the the chief of the World Health Organization (WHO). Personal protective equipment (PPE) is the first line of defense for HCWs against infectious diseases. At the height of the pandemic, PPE supplies became scarce, necessitating reuse, which increased the occupational COVID-19 risks to HCWs. Currently, there are few robust studies addressing PPE reuse and practice variability, leaving HCWs vulnerable to accidental contamination and harm. Objective: The objective of this study was to assess potential HCW contamination during PPE donning, doffing, and reuse. Methods: The study included 28 active acute care physicians, nurses, and nurse practitioners who evaluated 5 simulated patients with COVID-like symptoms while donning and doffing PPE between each patient encounter. An N95 mask was contaminated with a transparent fluorescent gel applied to the outside of the N95 mask to simulate contamination that might occur during reuse. Participants were evaluated after PPE doffing for each encounter using a black light to assess for face and body contamination. Results: All participants had multiple sites of contamination, predominantly on their head and neck. None of the participants were able to don and doff PPE without contaminating themselves during five consecutive simulation cycles. Conclusions: The current Centers for Disease Control and Prevention (CDC) guidelines for donning and doffing fall short in protecting HCWs. They do not adequately protect HCWs from contamination.

There is an urgent need for PPE and workflow redesign. © 2021 Published by Elsevier Inc.

Keywords—personal protective equipment; PPE; donning; doffing; PPE reuse; occupational risks

Introduction

COVID-19 has shown a bright light on the physical and emotional safety burdens that frontline health care workers (HCWs) face around the world. Unsafe working conditions and a lack of personal protective equipment (PPE) remain major challenges for HCWs throughout the recurrent waves of the pandemic and reflect on our society’s failings.

PPE offers a critical barrier for preventing disease transmission in health care settings, but its widespread use during the COVID-19 pandemic has changed the experience of care delivery. In the United States, an estimated 3600 HCWs perished from COVID-19, which was most likely contracted during work (1). Centers for Disease Control and Prevention (CDC) guidelines and PPE availability were unable to keep HCWs safe from harm. HCWs in low-income countries have been particularly affected due to limited protective equipment and delayed vaccinations (2). Globally, the Director-General of the World Health Organization has documented personal protective equipment issues with increased headaches, workload, discomfort, overheating, distraction, and personal burdens.

The Dangers of Reused Personal Protective Equipment: Healthcare Workers and Workstation Contamination

Bence Tóth1,2, László Perencsák1,3, László Marton4, T. Nathan5,1, Robert T. Lawton5,1, Anna Barta1, Máté Mathe1, Ágnes D. D. Csanádi1, Anna Marosi6,1, Barry L. Falik1, Eliza Sarmiento1, Devin Does1, Rami Ahmed1,3

1Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana, 2Jefferson College of Population Health, Thomas Jefferson University, Philadelphia, Pennsylvania, and 3University of Queensland, Brisbane, Queensland, Australia

Show more

Share Cite

The Lancet HIV, 2022

Summary

Personal protective equipment is essential to protect healthcare workers (HCWs). The practice of using reused personal protective equipment (PPE) poses high levels of risk for accidental contamination by healthcare workers. Scarce medical literature compares practical means or methods for safe PPE reuse while actively caring for patients. We showed that monitored clinical workflows for donning and doffing
Prevalence of Workplace Violence in Health Care/Emergency Departments

Workers in the health care sector make up about 50% of all victims of workplace assault. From 2002–2013, serious incidents of workplace violence were 4x more common for workers in the health care sector than for all other workers in the U.S.

Studies show that emergency nurses and other personnel in the ED experience a violent event about once every 2 months. ED workers are exposed to significant rates of physical and verbal abuse. Under-reporting of workplace violence in the ED is common and contributes to the difficulty in accurately tracking violence.

Impact of Workplace Violence on Nurses, Patients and U.S. Health Care System

100% of emergency nurses reported verbal assault and 82% reported physical assault in the past year. Emergency nurses have the highest rate of physical assaults of all nurses.
Physicians’ Experiences With Mistreatment and Discrimination by Patients, Families, and Visitors With Burnout

Liselotte N. Dyrbye, MD, MHPE; Colin P. West, MD, PhD; Christine A. Sinsky, MD; Mickey Trockel, MD, PhD; Michael Tutty, PhD; Daniel Satele, BA; Lindsey Carlasare, MBA; Tait Shanafelt, MD

Abstract

IMPORTANCE Burnout is common among physicians and is associated with suboptimal patient outcomes. Little is known about how experiences with patients, families, and visitors differ by physician characteristics or contribute to the risk of burnout.

OBJECTIVE To examine the occurrence of mistreatment and discrimination by patients, families, and visitors by physician characteristics and the association between such interactions and experiencing burnout.

DESIGN, SETTING, AND PARTICIPANTS This cross-sectional survey was conducted from November 20, 2020, to March 23, 2021, among US physicians.

EXPOSURES Mistreatment and discrimination were measured using items adapted from the Association of American Medical College’s Graduation Questionnaire with an additional item querying respondents about refusal of care because of the physicians’ personal attributes; higher score indicated greater exposure to mistreatment and discrimination.

MAIN OUTCOMES AND MEASURES Burnout as measured by the Maslach Burnout Inventory.

RESULTS Of 6512 responding physicians, 2450 (39.4%) were female, and 369 (7.2%) were Hispanic; 681 (13.3%) were non-Hispanic Asian, Native Hawaiian, or Pacific Islander; and 3633 (70.5%) were non-Hispanic White individuals. Being subjected to racially or ethnically offensive remarks (1849 [29.4%]), offensive sexist remarks (1810 [28.7%]), or unwanted sexual advances (1291 [20.5%]) by patients, families, or visitors at least once in the previous year were common experiences. Approximately 1 in 5 physicians (1359 [21.6%]) had experienced a patient or their family refusing to allow them to provide care because of the physician’s personal attributes at least once in the previous year. On multivariable analyses, female physicians (OR, 2.33; 95% CI, 2.02-2.69) and ethnic and racial minority physicians (eg, Black or African American: OR, 1.59; 95% CI, 1.13-2.23) were more likely to report mistreatment or discrimination in the previous year. Experience of mistreatment or discrimination was independently associated with higher odds of burnout (vs score of 0 [no mistreatment], score of 1: OR, 1.27; 95% CI, 1.04-1.55; score of 2: OR, 1.70; 95% CI, 1.38-2.08; score of 3: OR, 2.20; 95% CI, 1.89-2.57). There was no difference in the odds of burnout by gender after controlling for experiencing mistreatment and discrimination score and other demographic factors, specialty, practice setting, work hours, and frequency of overnight call.

CONCLUSIONS AND RELEVANCE In this study, mistreatment and discrimination by patients, families, and visitors were common, especially for female and racial and ethnic minority physicians, (continued)

Key Points

Question How frequently do physicians experience mistreatment and discrimination by patients, their families, and visitors; how does this vary by physician characteristics; and what is the association between having such interactions and experiencing burnout?

Findings In this cross-sectional study of 6512 US physicians, mistreatment and discriminatory behaviors by patients, families, and visitors within the previous year were common, especially for female and racial and ethnic minority physicians, and associated with higher burnout rates.

Meaning The findings suggest that efforts to mitigate risk of physician burnout and improve the work experience of female and racial and ethnic minority physicians should include strategies that promote patient, family, and visitor civility.

Supplemental content

Author affiliations and article information are listed at the end of this article.

Open Access. This is an open access article distributed under the terms of the CC-BY License.
“Fear is toxic to both safety and improvement”

Edward Deming, 1993
Psychological safety and learning behavior in work teams
Amy Edmondson
Administrative Science Quarterly; Jun 1999, 44, 2; ABI/INFORM Global
pg. 350

This paper presents a model of team learning and tests it in a multimethod field study. It introduces the construct of team psychological safety—a shared belief held by members of a team that the team is safe for interpersonal risk taking—and models the effects of team psychological safety and team efficacy together on learning and performance in organizational work teams. Results of a study of 51 work teams in a manufacturing company, measuring antecedent, process, and outcome variables, show that team psychological safety is associated with learning behavior, but team efficacy is not, when controlling for team psychological safety. As predicted, learning behavior mediates between team psychological safety and team performance. The results support an integrative perspective in which both team structures, such as context support and team leader coaching, and shared beliefs shape team outcomes.*
The Impact and Power of Staff Courage to Speak up

Open access Original research

BMJ Open

Associations between work satisfaction, engagement and 7-day patient mortality: a cross-sectional survey

Kirsten Brubakk,1 Martin Veel Svendsen,2 Dag Hafoss,2 Tonna Moen Hansen,1 Paul Barach3, Ole Tjomsland3

ABSTRACT

Objective This study examines the association between profession-specific work environments and the 7-day mortality of patients admitted to those units with acute myocardial infarction (AMI), stroke and hip fracture.

Design A cross-sectional study combining patient mortality data abstracted from the South-Eastern Norway Health Region, and the work environment scores at the hospital wards.

Setting Fifty-six wards in 20 hospitals administrated by the South-Eastern Norway Regional Health Authority.

Participants In total, 46,023 patients admitted to hospitals with AMI, stroke and hip fractures, and supported by 8,855 survey responses from physicians, nurses and managers over a 3-year period (2010–2012).

Primary and secondary outcome measures The primary outcome measures were the associations between the relative mortality rate for patients admitted with AMI, stroke and hip fractures and the profession-specific i.e., nurses, physicians, middle managers mean scores on the 19 organisational factors in a validated cross sectional, staff survey conducted annually in Norway. The secondary outcome measures were the mean scores with SD on the organisational factors in the staff survey reported by each profession.

Results The Nurse workbook (beta 0.019; 95% CI 0.009–0.029) and middle manager engagement (beta 0.024; 95% CI 0.015–0.033) levels were associated with a case-mix adjusted 7-day patient mortality rate. There was no significant association between physician work environment scores and patient mortality rates.

Conclusion 7-day mortality rates in hospital wards were negatively correlated with the nurse workbook and engagement scores. A deeper understanding of the relationship between patient outcomes, organisational structures and the underlying cultural issues is needed because they may provide a better understanding of the harm and death risks for patients due to organisational characteristics.

INTRODUCTION

Hospital work environments affect the patient safety climate: A longitudinal follow-up using a logistic regression analysis model

Kirsten Brubakk1,2, Martin Veel Svendsen,3 Ellen Twete Dalek1,3, Dag Hafoss4, Paul Barach3,5, Ole Tjomsland3

1 Department of Human Resources, South-Eastern Norway Regional Health Authority, Hamar, Norway
2 Institute for Health and Society, University of Oslo, Oslo, Norway
3 Department of Occupational and Environmental Medicine, Tellemark Hospital Trust, Skien, Skien, Norway
4 Department of Quality Improvement and Patient Safety, Norwegian Directorate of Health, Oslo, Norway
5 Unit for Health Sciences Research, Akershus University Hospital, Lørenskog, Norway
6 Department of Health and Inequality, National Institute of Public Health, Oslo, Norway
7 Department of Pediatrics, Wayne State University, Detroit, Michigan, United States of America
8 Jefferson College of Population Health, Philadelphia, Pennsylvania, United States of America
9 Sigmund Freud University, Vienna, Austria
10 Department of Health, South-Eastern Norway Regional Health Authority, Hamar, Norway

* kirsten.brubakk@helse-sorost.no

Background

Occupational worker wellness and safety climate are key determinants of healthcare organizations’ ability to reduce medical harm to patients while supporting their employees. We designed a longitudinal study to evaluate the association between work environment characteristics and the patient safety climate in hospital units.

Methods

Primary data were collected from Norwegian hospital staff from 970 clinical units in all 21 hospitals of the South-Eastern Norway Health Region using the validated Norwegian Work Environment Survey and the Norwegian version of the Safety Attitude Questionnaire. Responses from 91,225 surveys were collected over a three-year period. We calculated the factor mean score and a binary outcome to measure study outcomes. The relationship between the hospital unit characteristics and the observed changes in the safety climate was analyzed by linear and logistic regression models.

Results

A work environment conducive to safe incident reporting, innovation, and teamwork was found to be significant for positive changes in the safety climate. In addition, a work environment supportive of patient needs and staff commitment to their workplace was significant for maintaining a mature safety climate over time.
The Five Dysfunctions of Healthcare Teams

After Patrick Lencioni, 2007
The Power of the Clinical Microsystem

Mohr, et. al; Johnson et al; Barach et al.
TeamSTEPPS Model

Baker, Salas, King, Battles, Barach, 2006; 2007; 2009

https://www.hrsa.gov/behavioral-health/teamstepps
Culture Change is ESSENTIAL to TeamSTEPPS Model
Association Between Implementation of a Medical Team Training Program and Surgical Mortality

“...The 74 facilities in the training program experienced an 18% reduction in annual mortality (rate ratio [RR], 0.82; 95% confidence interval [CI] 0.76-0.91; P = 0.01) compared with a 7% decrease among the 34 facilities that had not yet undergone training (RR, 0.93; 95% CI, 0.80-1.06; P = 0.59).”
THE MODEL FOR IMPROVEMENT

What do we want to achieve?

What changes will drive our progress?

How will we measure our progress?

How should we modify our latest changes?

from: The Foundation of Improvement by Thomas W. Nolan et. al
Theory of Change

- Reduce maternal and neonatal mortality and stillbirths
- Close clinical, operational and leadership gaps

Learn from Improvement Projects
- Ward Level Projects
- Cross-departmental Projects

Coach and Facilitate

Build Locally Appropriate Capacity
- Clinical Capacity
- QI Capacity
- Leadership Capacity

Select Change Agents
- Clinical Champions
- Quality Improvement Leaders
IMPROVEMENT TOOLKIT

- Flowcharts
- SIPOC
- Cause and effect diagrams (Ishikawa/fishbone)
- FMEA-Failure Mode and Effects Analysis
- Pareto charts
- Run charts

CHAPTER 5
Lean and Six Sigma Management: Building a Foundation for Optimal Patient Care Using Patient Flow Physics

Ed Popovich, Hal Wiggin, and Paul Barach

The ultimate arrogance is to change the way people work, without changing the way we manage them.

— John Toussaint

High-performing healthcare organizations differentiate themselves by focusing relentlessly on improving their service and performance and are guided by process-improvement initiatives to advance patient care. Continuous quality improvement offers a powerful way of thinking about how to transform clinical operations and healthcare teams. Continuous Quality Improvement (CQI), Lean Management Systems (LMS), and Lean Six Sigma (LSS) are philosophies and methods for leadership, management, improvement, and innovation. They offer an approach, a set of tools, and a way of thinking about how to more effectively study, assess, and improve clinical flow, including addressing and reducing variations in processes and operations. LMS and LSS are also broadly generalizable to other health applications such as public health (see Chapter 11) and a broad array of settings, including applying CQI in resource-poor countries (see Chapter 13). For illustrative purposes, the primary focus of this chapter will be on traditional healthcare delivery systems in developed countries.

Popovich E, Wiggin H, Barach P, 2019
What we can learn from High Reliability Organizations about HCW Wellness and Loyalty

Stages in the development of a safety culture

PROACTIVE
Safety leadership and values drive continuous improvement

CALCULATIVE
We have systems in place to manage all hazards

REACTIVE
Safety is important, we do a lot every time we have an accident

PATHOLOGICAL
Who cares as long as we're not caught

GENERATIVE (High Reliability Orgs)
HSE is how we do business round here

After Ron Westrum
Evaluating policy and service interventions: framework to guide selection and interpretation of study end points

Richard J Lilford,1 Peter J Chilton,1 Karla Hemming,1 Alan J Girling,1 Celia A Taylor,2 Paul Barach3

Fig 1 | Modified Donabedian causal chain. Interventions at structural (policy) and generic service level can achieve effects through intervening variables (such as motivation and staff-patient contact time) further down the chain. For example, an intervention at (x) produces effects (good or bad) downstream at (a), (b), (c), and (d)

BMJ 2010;341:c4413 doi: 10.1136/bmj.c4413
Toward a Learning System for ERAS: Embedding Implementation and Learning Evaluation

Rohit Ramaswamy and Paul Randall Barach

“The success of organizations depends on their ability to design themselves as learning systems.” — Etienne Wenger

Introduction

Contemporary colorectal surgery was often associated with long length of stay (8 days for open surgery and 5 days for laparoscopic surgery), high cost, and rates of surgical site infection approaching 20–30%. During the hospital stay for elective colorectal surgery, the incidence of perioperative nausea and vomiting (PONV) may be as high as 80% in patients with certain risk factors. After discharge from colorectal surgery, readmission rates have been noted in past to be as high as 35.4%.

The concept of a multimodal approach to recovery after surgery was initially proposed by Kehlet who explored the possible determinants of postoperative morbidity in the late 1990s [1]. He identified potential risk factors that need to be recognized and treated perioperatively to minimize the effects of surgical stress on the patient. Kehlet also championed the idea of working within an integrated multidisciplinary framework. Together these efforts have led to a series of interventions that are formulated into standardized protocols to span a patient’s entire journey through the surgical process with distinct elements in the preoperative, intraoperative, and postoperative phases [2].

The outcomes of interest to patients and providers include freedom from nausea, freedom from pain at rest, early return of bowel function, improved wound healing, and early hospital discharge. The basic premise is that the impact of surgery on the metabolic and endocrine systems is reduced leading to earlier recovery. Successful implementation of ERAS can lead to reduced length of hospital stay, decreased rates of complications, and improved patient satisfaction [3–5]. In this chapter, we describe how the concepts drawn from the field of implementation science can be used to improve the consistency and quality of ERAS implementation while engaging front line clinical staff [5–6].

Management of Surgical Risk and Quality Improvement

It is widely understood today that the first step toward implementing ERAS to assure patient safety and quality of care is to address several factors that are external to the surgical process itself. Scaling up in new hospitals and countries requires attention to much more than the surgical interventions and requires an appreciation for introducing standardized processes in complex systems and appreciation of the implementation context [7]. These steps include (1) developing a standard set of activities that are needed to deliver ERAS within a health system (and above the clinical steps themselves); (2) identifying the operating factors (e.g., policies, staff, resources, schedules, supplies, equipment); (3) identifying the organizational factors (e.g., staff motivation, organizational culture, climate for innovation); and (4) developing a tailored, locally appropriate and bottom-up strategies to address the organizational and operational factors based on local circumstances and champions. By ensuring that both leadership and risk management require a tailoring of care from one that is task-oriented at the level of the

Fig. 39.2 Design Focused Implementation Framework (DFIF)
Consolidated Framework for HCW Wellness Research

Efficiency of Practice: Measurement Challenges
Formula for Improving HCW Wellness Interventions

Fig. 39.7 Formula for successful implementation and update of clinical interventions [38]

Ramaswamy R, and Barach P. 2020
Chapter 27
Safety 3.0 and the End of the Superstar Clinician

Chris P. Subbe and Paul Barach

Abstract Training of clinicians in both nursing and medicine is often focused on improving their individual competencies in the hope to reduce error and patient harm rates to a negligible level. Medicine attracts the brightest students in most countries through a highly competitive selection process. Despite this, 5–10% of patients admitted to hospital continue to suffer complications with significant morbidity and mortality. Disappointingly error rates in many areas have not significantly changed for decades.

The dominant philosophies of error reduction are ‘Safety 1’ and ‘Safety 2’. The principle of ‘Safety 1’ focuses on measurement and understanding of errors. ‘Safety 2’ is looking for resilient systems in which we seek to understand how people manage to create safety despite system weaknesses and endeavour to better appreciate successful safe working practices.

In this chapter in build on Safety 1 and 2, and introduce the concept of Safety 3.0. In contrast to the principles applied to reducing errors in hospitals, the high-reliability industries have used another approach to assure reliable, reduction of failures and to enhance safety: modular redundancy. This approach assures that safety-critical parts of technical systems exist in triplicate or quadruplicate backups and the failure of individual parts does not lead to catastrophic system failures and fatal outcomes. This might be the key to reliable safety of complex social-technical systems such as aviation, nuclear power, space travel and more.

The application of this principle is still rare in healthcare, but acceptance of the need for a robust safety management system based on redundancy of safety-critical
Meaningful Work

“Life is never made unbearable by circumstances, but only by lack of meaning and purpose.”

“Between stimulus and response, there is a space. In that space is our power to choose our response. In our response lies our growth and our freedom.”
For more background information please contact me

pbarach@gmail.com
and at https://jbarainnovation.com
+1773-612-7039